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ABSTRACT

Convection is ubiquitous in stars and occurs under many different conditions. Here we explore

convection in main-sequence stars through two lenses: dimensionless parameters arising from stellar

structure and parameters which emerge from the application of mixing length theory. We first define

each quantity in terms familiar both to the 1D stellar evolution community and the hydrodynamics

community. We then explore the variation of these quantities across different convection zones, different

masses, and different stages of main-sequence evolution. We find immense diversity across stellar

convection zones. Convection occurs in thin shells, deep envelopes, and nearly-spherical cores; it can

be efficient of inefficient, rotationally constrained or not, transsonic or deeply subsonic. This atlas

serves as a guide for future theoretical and observational investigations by indicating which regimes of

convection are active in a given star, and by describing appropriate model assumptions for numerical

simulations.
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1. INTRODUCTION

Convection is central to a wide range of mysteries in

stars. How are pulsations excited (Goldreich & Ku-

mar 1990)? How are magnetic fields generated in the

Sun and stars in general (Parker 1955; Brandenburg &

Subramanian 2005)? What drives stellar activity and

stellar spots (Lehtinen et al. 2020; Strassmeier 2009)?

How do stars spin down (Kraft 1967)? What sets the

radii of M-dwarfs (Kesseli et al. 2018; Morrell & Naylor

2019)? Where does stochastic low-frequency photomet-

ric variability come from (Cantiello et al. 2021; Bowman

2020)? What causes mass loss in Luminous Blue Vari-

ables (Jiang et al. 2018)?

Convection occurs not only during core hydrogen

burning, but also in later evolutionary phases, includ-

ing the red (super) giant phase (Trampedach & Stein

2011; Goldberg et al. 2021; Chiavassa et al. 2009), dur-

ing the helium flash (e.g. Dearborn et al. 2006; Mocák

et al. 2009), the thermally pulsating asymptotic giant

branch (e.g. Herwig 2005; Freytag & Höfner 2008; Siess

2010), in white dwarfs (e.g. Freytag et al. 1996; Cun-

ningham et al. 2020), classical novae (e.g. Denissenkov

et al. 2013), late phases of nuclear burning (e.g. Meakin

& Arnett 2006, 2007; Müller et al. 2016), and during

core collapse (e.g. Arnett & Meakin 2011; Burrows 2013;

Müller 2016).

For some goals, such as modeling main-sequence stel-

lar evolution, it is sufficient to use the steady-state one-

dimensional convective formulation of Mixing Length

Theory (Böhm-Vitense 1958; Henyey et al. 1965; Ludwig

et al. 1999, MLT), but for questions of dynamics (Smolec

2016), rotation (Antia et al. 2008), waves (Zhou et al.

2019) and precision stellar evolution (Joyce & Chaboyer

2018), this approach is insufficient.

To that end, significant effort has gone into improved

one-dimensional theories (e.g. Gough 1977; Stellingwerf

1982; Kuhfuss 1986; Canuto & Mazzitelli 1991; Deng

et al. 2006; Houdek & Dupret 2015; Jermyn et al. 2018)

as well as into dynamical numerical simulations of con-

vection zones (e.g. Chiavassa et al. 2011; Stein & Nord-

lund 2012; Gilet et al. 2013; Trampedach et al. 2013;

Rempel & Cheung 2014; Hotta et al. 2014; Jiang et al.

2015; Augustson et al. 2016; Yadav et al. 2016; Cristini

et al. 2017; Strugarek et al. 2018; Cunningham et al.

2019; Edelmann et al. 2019; Brown et al. 2020; Pratt

et al. 2020; Andrassy et al. 2020; Horst et al. 2020; An-

ders et al. 2021; Korre & Featherstone 2021; Schultz

et al. 2022, among many others). A challenge in these

efforts is that different convection zones can lie in very

different parts of parameter space. Just to name a few

axes of variation: convection can occur in thin shells

or deep envelopes or nearly-spherical cores, it can carry

most of the energy flux or very little, it can be rota-

tionally constrained or not, and it can be transsonic or

deeply subsonic.

Here we explore the dimensionless parameters that

set the stage for convection in main-sequence stars, as

well as those which emerge with the application of mix-

ing length theory. We begin in Section 2 by describing

the different convection zones which appear in main-

sequence stars. In Section 3 we then define each quan-

tity of interest in terms familiar both to the 1D stellar

evolution community and the hydrodynamics commu-

nity. In Section 4 we explain how we construct our stel-

lar models. We then explore in Section 5 how these

quantities vary across different convection zones, differ-

ent masses, and different stages of main-sequence evolu-

tion. We finally discuss the different regimes which arise

in main-sequence stellar convection, and the prospects

for realizing these regimes in numerical simulations.

2. CONVECTION ZONES

Convection occurs in different regions of stars on the

main sequence, which we depict schematically in Fig-

ure 1 for stars of different mass and spectral types.

For a more quantitative picture obtained using one-

dimensional stellar evolution calculations we refer to

Fig. 2 in Cantiello & Braithwaite (2019).

When we refer to a convection zone (CZ) below we

mean a Schwarzschild-unstable layer, assuming that

convection rapidly homogenizes the composition of the

zone.

Generally speaking, convection in stars can occur in

the presence of a steep temperature gradient due to nu-

clear energy generation (e.g. core convection), a large

gradient in opacity, and/or a high heat capacity and

consequently low adiabatic gradient. An increase of the

opacity and a decrease of the adiabatic gradient tend to

occur in stellar envelopes, at temperatures correspond-

ing to the ionization of different species (Cantiello &

Braithwaite 2019).

We classify these convection zones first into three

broad classes:
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Figure 1. Landscape of convection in main sequence stars of different mass and spectral type. Large opacity in low-mass
stars is responsible for deep envelope convection zones and fully convective stars. Thin ionization-driven convection zones can
be caused by the recombination of hydrogen (HI), helium (HeI and HeII), and iron group elements (FeCZ) in early-type stars.
For masses above 1.1M� nuclear burning leads to steep-enough temperature gradients to drive core convection. This outline is
informed by one-dimensional stellar evolution calculations, see Fig. 2 in Cantiello & Braithwaite (2019) for a more quantitative
picture. We warn that some of the thin ionization-driven convection zones might have subcritical Rayleigh numbers, and so
may not have convective motions in real stars (see e.g. Jermyn et al. 2022).

1) Core CZs (e.g. the core of a 20M� star).

2) Deep Envelope CZs (e.g. the Sun’s envelope)

3) Thin ionization-driven CZs (e.g. the HeII ioniza-

tion zone in a 2M� star)

There is some ambiguity in assigning some convection

zones to these classes. This arises primarily in two sce-

narios. First, is the convection zone in an M-dwarf,

which can span the entire star, a Deep Envelope CZ

or a Core CZ? Secondly, at what point does the Deep

Envelope CZ seen in solar-like stars become a thin zone

driven by HI/HeI/HeII ionization?

In the first instance we want to have as continuous

a definition as possible across the Hertzsprung-Russel

(HR) diagram. So we say that an M dwarf has a Deep

Envelope CZ, because the convection zone gradually re-

treats upwards with increasing mass.

In the case of the transition from Deep Envelope to

thin ionization-driven convection, we make the decision

based on the temperature at the base of the CZ, because

ionization zones occur at nearly fixed temperatures.

In full then, our classification scheme is

1) Core CZ - If minner/M? < 0.03 and M? > M�.

2) Deep Envelope CZ - If Tinner > 500, 000 K and

M? < 2M�.

3) Thin ionization-driven CZ otherwise.

Here minner and Tinner are respectively the mass coordi-

nate and temperature at the inner boundary of the con-

vection zone. Note that this classification scheme does

not distinguish if a thin ionization-driven CZ is driven

by a decrease in the adiabatic gradient or an opacity in-

crease. Lower numbers in the above list receive priority

if a CZ is validly described by multiple classes (e.g., a

CZ that satifies #1 and #2 is classified as #1). Next, if

the zone is ionization-driven, we select the sub-class by:

3a) HI CZ - If Touter < 11, 000 K.

3b) HeI - If the CZ contains a point with 11, 000 K <

T < 35, 000 K.

3c) HeII - If the CZ contains a point with 35, 000 K <

T < 100, 000 K.
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3d) FeCZ - If the CZ contains a point with

100, 000 K < T < 500, 000 K.

This approach works because the ionization state is

much more strongly controlled by temperature than by

density, so temperature is actually a good proxy for ion-

ization state. If a zone meets multiple of these criteria

we classify it by the hottest subclass it fits.

3. DIMENSIONLESS PARAMETERS

We describe convection using two categories of dimen-

sionless parameters: “inputs” (Table 1), which depend

on the stellar models and microphysics, and “outputs”

(Table 2), which include a measure of the convective

velocity or mixed temperature gradient and therefore

depend upon a theory of convection. For the latter we

employ Mixing Length Theory (MLT) following the pre-

scription of Cox & Giuli (1968); we emphasize that this

theory reflects a drastic simplification of reality and is

in many regards unsatisfactory, but it does allow us to

provide order-of-magnitude estimates for these quanti-

ties. We note also that even the “inputs” in this paper

depend upon our choice to employ MLT, because the

stratification achieved in convective regions can subtly

alter the stratification and values throughout the model.

Nonetheless, MLT reflects the current standard in stellar

modelling, and points the way to many open questions,

so it is valuable to use as a baseline.

3.1. Input Parameters

3.1.1. Microphysics

We begin with quantities set solely by the micro-

physics. The Prandtl number is the ratio

Pr ≡ ν

χ
, (1)

where ν is the kinematic viscosity and χ is the thermal

diffusivity. The magnetic Prandtl number is similarly

Pm ≡ ν

η
, (2)

where η is the magnetic diffusivity. Our prescriptions

for these diffusivities are given in Appendix A.

We further write the ratio of radiation pressure to to-

tal pressure as

βrad ≡
Prad

P
. (3)

3.1.2. Stellar Structure

Next, we present quantities determined by stellar

structure. The first of these is the Rayleigh number,

Ra ≡ δr4 〈g〉〈∇rad −∇ad〉
〈ν〉〈χ〉

(
1

〈h〉

)(
4− 〈βgas〉
〈βgas〉

)
(4)

which measures how unstable a region is to convec-

tion. When Ra < Racrit ≈ 103, convective motions

are diffusively stabilized, so the convective velocity is

zero (Chandrasekhar 1961). Here, g is the accelera-

tion of gravity, δr is the thickness of the convection

zone, h ≡ −dr/d lnP is the pressure scale height,

βgas ≡ Pgas/P = 1 − βrad is the ratio of gas pressure

to total pressure,

∇ad ≡
∂ lnT

∂ lnP

∣∣∣∣
s

(5)

is the adiabatic temperature gradient, s is the entropy,

∇rad ≡
3κLP

64πGMσT 4
(6)

is the radiative temperature gradient, κ is the opacity,

L is the luminosity, P is the pressure, T is the tempera-

ture, G is the gravitational constant, M is the mass co-

ordinate, and σ is the Stefan-Boltzmann constant. The

factor in equation (4) depending on β arises from the

thermal expansion coefficient, and is equal to the ratio

of the density susceptibility to the temperature suscep-

tibility (χρ/χT ). Note that the Rayleigh number is a

global quantity defined over the whole convection zone.

Ra depends on the depth of the zone (δr), but the other

quantities on the right-hand side of equation (4) are gen-

erally functions of radius and so must be averaged, which

we denote with angled brackets. The details of this av-

eraging are described in Section 4.2.

Stellar structure provides the geometry of the CZ. The

aspect ratio is

A ≡ router
δr

, (7)

where router is the radial coordinate of the outer bound-

ary of the convection zone. Thin shell CZs have large

aspect ratios and can be adequately modeled with local

Cartesian simulations, but CZs with small aspect ratios

require global (spherical) geometry to capture realistic

dynamics.

The density contrast is

D ≡ ρinner
ρouter

, (8)

where ρinner and ρouter are respectively the density on

the inner and outer boundaries of the convection zone.

When D is small, density stratification can be neglected,

as in the Boussinesq approximation.

The optical depth across the convection zone

τCZ ≡
∫
CZ

κρdr, (9)
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Table 1. Dimensionless Input Parameters.

Name Description Appears

Pr Prandtl number Eq. (1)

Pm Magnetic Prandtl number Eq. (2)

βrad Ratio of radiation to total pressure Eq. (3)

Ra Rayleigh number Eq. (4)

A Aspect ratio Eq. (7)

D Density ratio Eq. (8)

τCZ CZ optical depth Eq. (9)

τouter Optical depth from surface to outer edge of CZ Eq. (10)

ΓEdd Eddington ratio Eq. (11)

Ek Ekman number Eq. (13)

Table 2. Output Parameters.

Name Description Appears

Re Reynolds number Eq. (14)

Pe Péclet number Eq. (15)

Ma Mach number Eq. (16)

Γrad
Edd Radiative Eddington ratio Eq. (17)

Fconv/F Ratio of convective to total energy flux N/A

S Stiffness Eq. (18)

Ro Rossby number Eq. (19)

tconv Turnover time Eq. (20)

and the optical depth from the outer boundary of the

convection zone to infinity

τouter ≡
∫ ∞
router

κρdr, (10)

together tell us whether or not radiation can be treated

diffusively in the convection zone. Note that our stellar

models do not extend into the atmosphere of the star,

which is handled separately as a boundary condition, so

τouter will never be less than the optical depth of the

base of the atmosphere. In our models this minimum

surface optical depth is τmin = 2/3.

Related, the Eddington ratio is

ΓEdd ≡
L

LEdd
, (11)

where

LEdd ≡
4πGMc

κ
, (12)

and c is the speed of light. Here M is the mass coordi-

nate, and both κ and LEdd are functions of M .

Finally, we measure the ratio of the rotational and

viscous timescales via the Ekman number

Ek ≡ ν

2Ωδr2
. (13)

Here Ω is the angular velocity of the CZ and we assume

solid body rotation. We choose Ω as a function of mass

and evolutionary state to reproduce typical observed ro-

tation periods. Details on this choice are described in

Appendix D.

In the presence of rotation, Ek, Ra, and Pr combined

determine the diffusive instability of a CZ. Rotation

dominates viscous effects when Ek � 1, but the out-

put Rossby number (below) more reliably describes how

effectively rotation deflects convective flows.

3.2. Outputs

Using Mixing Length Theory we obtain the convection

speed vc and temperature gradient ∇ (Böhm-Vitense

1958; Cox & Giuli 1968). We define the Reynolds num-

ber

Re ≡ vcδr

ν
, (14)

which is the ratio of the viscous timescale to the convec-

tive turnover time, so convection at large Re is turbu-

lent.

We further define the Péclet number

Pe ≡ vcδr

χ
, (15)

which is the ratio of the thermal diffusion timescale

across the zone to the turnover time, and so measures

the relative importance of convective and radiative heat

transfer.

Next we define the Mach number

Ma ≡ vc
cs
, (16)



6 Jermyn et al.

where cs is the adiabatic sound speed. Ma mea-

sures the magnitude of thermodynamic fluctuations,

and sound-proof (e.g., anelastic) models are valid at

low Ma. In radiation-dominated (βrad ≈ 1), low Pe

gases, the relevant fluctuations become isothermal and

we should replace cs with the isothermal sound speed

c2s,iso = ∂P/∂ρ|T (Grassitelli et al. 2015; Jiang et al.

2015). For CZs where this is relevant we will show both

the adiabatic and isothermal Mach numbers (Maiso ≡
vc/cs,iso).

With ∇ we obtain the ratio of convective flux to to-

tal flux Fconv/F , which is closely related to both the

Nusselt number Nu and to the efficiency parameter Γ

in Mixing Length Theory (see the discussion in Jermyn

et al. 2022b). We also construct the radiative Eddington

ratio

Γrad
Edd ≡

Lrad

LEdd
, (17)

where Lrad is the radiative luminosity, which depends

upon the steady-state temperature gradient ∇ achieved

by the convection, and is therefore distinct from the Ed-

dington ratio, ΓEdd.

We further write the stiffness

S =
N2

RZ

f2conv
(18)

of the convective-radiative boundary, which measures

how difficult it is for convective motions to proceed

past the boundary. Here NRZ is the Brünt-Väisälä fre-

quency in the radiative zone and the convective fre-

quency fconv = vc/h. Inner and outer boundaries in

shell CZs are distinguished as Sinner/outer. We only re-

port values for convection zones which have the relevant

boundaries1.

We measure rotation using the Rossby number

Ro ≡ vc
2Ωδr

. (19)

We use the same uniform Ω to calculate Ro as we did

for Ek (Equation 13).

Finally, we compute the dimensional turnover time

tconv ≡
∫
CZ

dr

vc
, (20)

which is useful for reasoning about the effects of rotation

as a function of Ω.

1 Core convection zones do not have inner boundaries. Likewise,
when convection zones reach the surface of our models we cannot
calculate an outer stiffness because there is no outer boundary
inside of the model. Physically there ought to be a location where
the energy transport becomes radiative, but this occurs in the
atmosphere, which we treat with a simple boundary condition.

4. METHODS

4.1. Stellar Evolution

We calculated stellar evolutionary tracks for stars

ranging from 0.3 − 60M� using release r21.12.1 of the

Modules for Experiments in Stellar Astrophysics soft-

ware instrument (MESA Paxton et al. 2011, 2013, 2015,

2018, 2019). Details on the MESA microphysics inputs

are provided in Appendix B. Our models were run at

the Milky Way metallicity of Z = 0.014, use convective

premixing (Paxton et al. 2019, Section 5.2) and the Cox

MLT option (Cox & Giuli 1968) with αMLT = 1.6, and

determine the convective boundary using the Ledoux

criterion. All data and scripts used in compiling this

atlas are available publicly. See Appendix C for details.

4.2. Averaging

We are interested in obtaining a global measure of

each parameter (e.g., Re) across a convection zone, yet

these parameters depend on quantities which themselves

vary across the convection zone (e.g., vc, ν), so we re-

quire an averaging procedure. We denote the radial av-

erage of a quantity q over a convection zone by

〈q〉 ≡ 1

δr

∫
CZ

qdr. (21)

With this, we calculate the averages

Pr =
〈ν〉
〈χ〉

(22)

Pm =
〈ν〉
〈η〉

(23)

βrad = 〈Prad

P
〉 (24)

Ra = δr4
〈g〉〈∇rad −∇ad〉

〈ν〉〈χ〉

(
1

〈h〉

)(
4− 〈βgas〉
〈βgas〉

)
(25)

ΓEdd = 〈 L

LEdd
〉 (26)

Γrad
Edd = 〈 Lrad

LEdd
〉 (27)

Fconv

F
= 〈

Fconv(r)

F (r)
〉 (28)

Ek =
〈ν〉

2Ωδr2
(29)

Re =
〈vc〉
〈ν〉

δr (30)

Pe =
〈vc〉
〈χ〉

δr (31)

Ma =
〈vc〉
〈cs〉

(32)

Ro =
〈vc〉
2Ωδr

(33)
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To compute the stiffness we radially average quanti-

ties within one pressure scale height of the convective-

radiative boundary2, where the scale height is measured

at the boundary. Once more denoting radial averages

by 〈...〉, we write

S =
〈N〉2RZ

〈(vc/h)2〉CZ
, (34)

where the subscript RZ denotes an average on the ra-

diative side of the boundary, and CZ denotes an average

on the convective side.

We chose to compute averages radially because con-

vection involves radial heat transport, making averaging

in one dimension (radially) seem more appropriate than

a volume average, which would pick up much more con-

tribution from low-density outer layers, or a mass av-

erage, which is dominated by motions very deep down.

Arguments could well be made for other choices, includ-

ing mass, volume, or pressure weighting, and in specific

applications it may be clearer which kind of average is

most appropriate.

In Appendix E we examine the effects of averaging

profiles of e.g., Pr directly (i.e. Pr = 〈ν/χ〉) rather than

averaging the diffusivities individually. For most con-

vection zones we find small (. 2×) differences between

the two, but for Deep Envelope CZs quantities can differ

by orders of magnitude depending on the averaging pro-

cedure because those zones are strongly stratified. To

better capture this variation we additionally report av-

erages over the outer and inner pressure scale height of

the Deep Envelope CZs.

5. DISCUSSION

5.1. Summary of Results

In Appendix F we present plots of the quantities in

Tables 1 and 2 for each convection zone across the HR

diagram. We group quantities by the class and subclass

of convection zone, as our aim is to provide as complete

a picture as possible about the properties of each kind

of convection zone. Our aim is for each subsection of

Appendix F to stand on its own, and so the same points

are often repeated between these.

For each zone we begin with a figure showing the as-

pect ratio to introduce the geometry of the zone. We

then study each of our other parameters in Tables 1

and 2. Along the way we discuss implications for study-

ing these convection zones in simulations, as well as the

prospects for answering specific science questions.

2 If the CZ or RZ does not extend for a full pressure scale height
we average over as much as we can without crossing another
convective-radiative boundary.

Table 3 shows the ranges of key input parameters we

obtain for each convection zone, and Table 4 shows the

same for output parameters. For some convection zones

we show both the full mass range and subsets meant to

highlight properties that vary strongly with mass. More-

over, the HeI convection zone has sub-critical Rayleigh

numbers over certain mass ranges. In those ranges the

HeI zone has no convective motions because it is not un-

stable (Jermyn et al. 2022). As such we have restricted

the mass range for the HeI CZ in our table to just

that which supports super-critical Rayleigh numbers3.

The same applies to the HeII CZ, but for it sub-critical

Rayleigh numbers occur at high masses with large Ed-

dington ratios which may reflect instability (Jiang et al.

2015, 2018), so we retain the full mass range for the HeII

CZ.

Tables 3 and 4 tell a story of enormous diversity. For

a single class of convection zone, many properties, like

Ra, Re, and Pe span five or more orders of magnitude as

a function of mass! Across different classes of convection

zones, the diversity is even more striking. We see aspect

ratios ranging from unity to 103, density ratios from

unity to 107, optical depths from unity up to 1012, and

Rossby numbers from 10−3 up to 10. In Sections 5.2

and 5.3 we examine the implications of these parameter

ranges for the choice of simulation techniques and for

the scientific questions that each CZ poses.

5.2. Physical Regimes

We have classified convection zones in solar metallicity

main-sequence stars into six categories:

1. Deep Envelope (M . 1.2M�)

2. HI (1.3M� .M . 3M�)

3. HeI (2M� .M . 2.5M�)

4. HeII (M & 1.5M�)

5. FeCZ (M & 7M�)

6. Core (M & 1.1M�)

Different physical processes dominate in each of these

(Table 5), which suggests using different kinds of nu-

merical experiments for studying them.

3 Here we have used the simplest possibile stability analysis: com-
paring the average Ra from Eqn. 25 to the canonical critical value.
A more robust stability analysis could be performed by solving
for the eigenvalues associated with the stellar stratification, but
such an analysis is beyond the scope of this Atlas and we encour-
age future authors to explore this.
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Table 3. Ranges of input quantities obtained from 1D stellar models, rounded to the nearest integer log10. For quantities which span
less than one decade we just list one value. All mass ranges are approximate and metallicity-dependent. To compute Ek we use Ω
corresponding to a surface velocity of 150 km s−1 for O-F stars (down to 1.2M�), and scale the surface velocity by M2 below that point.
Note that the properties of Deep Envelope CZs vary significantly in space, and we explore this variation in detail in Appendix F.1.2.

CZ Mass Range log10 βrad log10 Ra log10 A log10 D log10 τCZ log10 τsurf log10 ΓEdd log10 Ek

Deep Envelope 0.3M� .M . 1.2M� (−5,−3) (25, 34) (0, 1) (4, 7) (9, 13) 0 (−2, 0) (−16,−14)

HI 1.3M� .M . 3M� (−3,−1) (1, 23) (1, 3) (0, 3) (0, 8) 0 (−2,−1) (−14,−4)

HI (low mass) 1.3M� .M . 1.5M� (−3,−2) (9, 23) (1, 3) (0, 3) (2, 8) 0 (−2,−1) (−14,−7)

HI (high mass) 1.5M� .M . 3M� (−2,−1) (1, 16) (2, 3) (0, 1) (0, 5) 0 (−2,−1) (−11,−4)

HeI 2M� .M . 2.5M� (−2,−1) (3, 4) 3 0 1 1 −2 (−6,−5)

HeII 1.5M� .M . 60M� (−2, 0) (0, 10) (2, 3) 0 (0, 4) (0, 3) (−2, 0) (−8,−3)

FeCZ 7M� .M . 60M� (−1, 0) (5, 11) (1, 3) (0, 1) (3, 4) (1, 4) (−1, 0) (−7,−5)

FeCZ (low mass) 7M� .M . 30M� (−1, 0) (4, 9) (1, 3) (0, 1) (3, 4) (2, 4) (−1, 0) (−7,−6)

FeCZ (high mass) 30M� .M . 60M� 0 (7, 11) (1, 2) (0, 1) (3, 4) (1, 2) 0 (−7,−5)

Core 1.1M� .M . 60M� (−3, 0) (24, 27) 0 (0, 1) (11, 12) (10, 12) (−3, 0) (−15,−12)

Core (low mass) 1.1M� .M . 30M� (−3, 0) (24, 27) 0 (0, 1) (11, 12) (10, 12) (−3, 0) (−15,−13)

Core (high mass) 30M� .M . 60M� (−1, 0) (24, 25) 0 1 11 10 0 (−14,−12)

Table 4. Ranges of output quantities obtained from 1D stellar models rounded to the nearest integer log10. For quantities which span less than
one decade we just list one value. All mass ranges are approximate and metallicity-dependent. To compute Ro we use Ω corresponding to a
surface velocity of 150 km s−1 for O-F stars (down to 1.2M�), and scale the surface velocity by M2 below that point. Note that the properties of
Deep Envelope CZs vary significantly in space, and we explore this variation in detail in Appendix F.1.2.

CZ Mass Range log10 Re log10 Pe log10 Ma log10 Ro log10 tconv/d log10
Fconv

F
log10 Souter log10 Sinner

Deep Envelope 0.3M� .M . 1.2M� 13 (4, 7) (−4,−2) (−3,−1) (1, 2) 0 (−1, 1) (4, 8)

HI 1.3M� .M . 3M� (1, 12) (−8, 4) (−5,−1) (−3, 1) (−1, 3) (−16, 0) (−1, 0) (−1, 9)

HI (low mass) 1.3M� .M . 1.5M� (8, 12) (−1, 4) (−2,−1) (−1, 1) (−1, 0) (−1, 0) 0 (−1, 3)

HI (high mass) 1.5M� .M . 3M� (1, 10) (−8, 2) (−5,−1) (−3, 1) (−1, 3) (−16, 0) (−1, 0) (−1, 9)

HeI 2M� .M . 2.5M� (2, 3) (−6,−5) −4 (−3,−2) (1, 3) (−14,−11) (4, 8) (6, 7)

HeII 1.5M� .M . 60M� (−1, 8) (−8, 0) (−5,−1) (−3, 0) (−1, 3) (−16,−1) (1, 9) (1, 9)

FeCZ 7M� .M . 60M� (5, 7) (−2, 1) (−3,−1) (−1, 0) (0, 2) (−6,−1) (2, 4) (1, 3)

FeCZ (low mass) 7M� .M . 30M� (5, 7) (−2, 1) (−3,−1) (−1, 0) (0, 2) (−6,−1) (2, 4) (1, 4)

FeCZ (high mass) 30M� .M . 60M� (5, 7) (−1, 1) (−2,−1) 0 (1, 2) (−4,−1) (2, 4) (1, 2)

Core 1.1M� .M . 60M� (11, 13) (6, 7) (−4,−3) (−3,−1) (1, 2) (−1, 0) (5, 8) N/A

Core (low mass) 1.1M� .M . 30M� (11, 13) (6, 7) (−4,−3) (−3,−2) (1, 2) (−1, 0) (5, 8) N/A

Core (high mass) 30M� .M . 60M� 11 6 −3 (−2,−1) (1, 2) 0 (5, 6) N/A

5.3. Scientific Questions

Different regimes of convection pose distinct scientific

questions. Table 6 summarizes some of the topics which

are interesting to study for each class of convection zone.

5.3.1. Rotation

Rapid global rotation can stabilize the convective in-

stability (Chandrasekhar 1961). This effect is most

prominent in the regime of Ek � 1 and Pr & 1; since

stellar CZs have Pr � 1, we do not expect rotation to

substantially modify the value of the critical Rayleigh

number.

Assuming convective instability, rotation influences

convection by deflecting its flows via the Coriolis force.

The Rossby number Ro measures how large advection is

compared to the Coriolis force, and when Ro � 1, the

Coriolis force dominates over the nonlinear inertial force.

In the regime of Ro� 1 attained in Deep Envelope and
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Table 5. Summary of important physical processes in main-sequence convection zones. “Bound.” refers to the outer boundary, “Diff.”
refers to the diffusive approximation. All mass ranges are approximate and metallicity-dependent. We do not include mass ranges in which
convection zones which have subcritical Rayleigh numbers as these zones do not undergo convective motions (Jermyn et al. 2022).

CZ Mass Range Geometry Radiation Pressure? Radiative Transfer? Rotation? Fluid Dynamics

Deep Envelope M . 1.2M� Global Neglect Diff. Bulk, Full Bound. Include Mixeda

HI (low mass) 1.3M� .M . 1.5M� Local Neglect Diff. Bulk, Full Bound. Neglect Compressible

HI (high mass) 1.5M� .M . 2.5M� Local Neglect Mixedb Include Boussinesq

HeI 2M� .M . 2.5M� Local Neglect Diffusive Include Boussinesq

HeII 1.5M� .M . 9M� Local Neglect Diffusive Include Boussinesq

FeCZ (low mass) 7M� .M . 30M� Local Include Diffusive Include Boussinesq

FeCZ (high mass) M & 30M� Global Include Full Neglect Compressible

Core (low mass) 1.1M� .M . 30M� Global Neglect Diffusive Include Boussinesq

Core (high mass) M & 30M� Global Include Diffusive Include Anelastic

aThe anelastic approximation is appropriate in the deeper portions of these zones, where the Mach numbers are low. The
compressible equations are needed near the surface, where the Mach numbers can approach unity.

bDiffusion is appropriate in the bulk, but full radiative transfer is important near the surface.

Table 6. Scientific topics in main-sequence convection zones. For more on fossil magnetic fields and convection see Jermyn & Cantiello
(2021) and references therein. “Rad.” means radiation.

CZ Mass Range Topics

Deep Envelope M . 1.2M� Rotational constraints. Dynamo action. Impact of stratification.

HI (low mass) 1.3M� .M . 1.5M� Internal Gravity Waves. Wave Mixing. Impact of sonic motion.

HI (high mass) 1.5M� .M . 2.5M� Marginal Ra. Weak turbulence. Interaction with fossil fields.

HeI 2M� .M . 2.5M� Marginal Ra. Weak turbulence. Rotational constraints. Optically thin convection.

HeII 1.5M� .M . 9M� Marginal Ra. Weak turbulence. Interaction with fossil fields. Dynamo action.

FeCZ (low mass) 7M� .M . 30M� Interaction with fossil magnetic fields. Low-stiffness boundaries. Dynamo action.

FeCZ (high mass) M & 30M� Impact of Rad. Pressure. Sonic motion. Super-Eddington limit. Low Pe. Dynamo action.

Core (low mass) 1.1M� .M . 30M� Internal Gravity Waves. Dynamo action. Rotational constraints. Stiff boundaries.

Core (high mass) M & 30M� Internal Gravity Waves. Dynamo action. Impact of Rad. Pressure.

Core CZs, rotation two-dimensionalizes the convection,

deflecting flows into tall, skinny columns that align with

the rotation axis (discussed in the solar context in e.g.,

Featherstone & Hindman 2016; Vasil et al. 2021). In the

regime of Ro� 1, rotation does not appreciably modify

convection compared to a non-rotating system.

It is unclear how rotation influences convective dy-

namics in the transitional Ro ∼ 1 regime. A brief and

modern review describing the modern theory of rotating

convection is provided by Aurnou et al. (2020); we note

that the regimes of Ro � 1 and Ro � 1 are described

in detail, but Ro ∼ 1 does not have a clean theoretical

understanding. On the scale of whole convection zones

rotation can couple with convection to drive differen-

tial rotation, and the associated latitudinal shear can

be crucial in driving dynamos (Brun et al. 2017).

5.3.2. Magnetism

Main-sequence CZs consist of strongly-ionized fluid,

so magnetism should be universally important.

Dynamos are some of the most exciting applications

of magnetoconvection (Brandenburg & Subramanian

2005). Deep Envelope CZs are known to support com-

plex dynamo cycles (as in the Sun), and a full under-

standing of these cycles remains elusive (e.g., Brown

et al. 2010; Hotta et al. 2016; Brun et al. 2022). Dy-

namos are likewise of interest in the HeII CZ because

it has the highest kinetic energy density of all subsur-

face CZs for most A/B stars (Cantiello & Braithwaite
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2019; Jermyn & Cantiello 2020), making dynamo action

there a good candidate to explain the observed mag-

netic fields of e.g. Vega and Sirius A (Petit et al. 2010,

2011). The FeCZ is similarly of interest because FeCZ

dynamos probably set the magnetic field strengths of

most O stars (Cantiello & Braithwaite 2011; MacDon-

ald & Petit 2019). In Core CZs, dynamo-generated fields

could be the progenitors of those observed in Red Gi-

ant cores and compact stellar remnants (Fuller et al.

2015; Cantiello et al. 2016), so understanding their con-

figuration and magnitude is important for connecting to

observations.

We also note that Deep Envelope CZs uniformly have

Pm � 1, while each other CZ class has Pm � 1 in

some mass range, so these could exhibit very different

dynamo behaviors and likely need to be studied sepa-

rately. Many fundamental studies into scaling laws and

force balances in magnetoconvection employ the qua-

sistatic approximation for magnetohydrodynamics (e.g.

Yan et al. 2019). The quasistatic approximation as-

sumes that Rm = PmRe → 0; in doing so, this ap-

proximation assumes a global background magnetic field

is dominant and neglects the nonlinear portion of the

Lorentz force. This approximation breaks down in con-

vection zones with Pm > 1 and future numerical ex-

periments should seek to understand how magnetocon-

vection operates in this regime. Understanding which

lessons from these reduced experiments apply in the

Pm > 1 regime may help unravel some mysteries of dy-

namo processes in the HI/HeI/HeII/Fe/Core CZs.

Beyond dynamos, convection can interact with fossil

magnetic fields (Zeldovich 1957), and it has been sug-

gested that this can serve to erase or hide the near-

surface fields of early-type stars (Jermyn & Cantiello

2020, 2021). In the limit of ∇rad � ∇ad and weak

magnetic fields the result is likely that the fossil field

is erased and replaced with the result of a convective

dynamo (Tobias et al. 2001; Korre et al. 2021), though

considerable uncertainties remain in this story (Feath-

erstone et al. 2009). In the limit of weak convection

(∇rad ∼ ∇ad) and strong magnetic fields convection is

actually stabilized and so prevented from occuring in

the first place (Gough & Tayler 1966; MacDonald & Pe-

tit 2019; Jermyn & Cantiello 2020). These interactions

are least-understood and so most interesting in the in-

termediate limit where the kinetic and magnetic energy

densities are comparable, which occurs only in the HeI,

HeII, and Fe CZs.

5.3.3. Internal Gravity Waves

Internal Gravity Waves (IGW) are generated at the

boundaries of convection zones (Goldreich & Kumar

1990). The power in these waves peaks in frequency near

the convective turnover frequency, and the overall flux

of IGW scales as FconvMaα for some order-unity α (Gol-

dreich & Kumar 1990; Rogers et al. 2013; Lecoanet &

Quataert 2013; Couston et al. 2018). This makes it par-

ticularly important to study wave generation at the low-

mass end of the HI CZ, because the HI CZ has Fconv ∼ F
and Ma ∼ 0.3, so the wave flux is expected to be a

substantial fraction of the total stellar luminosity. This

could produce substantial wave mixing (Garcia Lopez &

Spruit 1991) or even alter the thermal structure of the

star. Wave mixing may also be induced by Core con-

vection zones (Rogers & McElwaine 2017), where the

smaller Mach number is offset by the larger stellar lu-

minosity, resulting in even larger IGW fluxes.

Since g-modes are evenescent in convective regions,

they have small predicted amplitudes at the surface of

stars with convective envelopes, making them difficult

to detect (Appourchaux et al. 2010). There are claims

of detection of solar g-modes in the literature (Garćıa

et al. 2007; Fossat et al. 2017), but so far none has been

fully verified (Schunker et al. 2018; Scherrer & Gough

2019; Böning et al. 2019).

Even in early-type stars is usually difficult to observe

IGW with very long periods, because these require long

observing campaigns. Because the IGW excitation spec-

trum peaks near the convective turnover time, IGW

from the Core, Fe, and low-mass HI convection zones

should have the most readily observable time-scales,

with typical periods less than ten days. However, the

transmission of waves to the surface may make IGW dif-

ficult to observe from core convection zones (Lecoanet

et al. 2019; Cantiello et al. 2021).

5.3.4. Marginal Stability

Convective instability requires a Rayleigh number

greater than the critical value of ∼ 103 (Chandrasekhar

1961), and the character of marginally unstable convec-

tion can be quite different from that of high-Ra con-

vection. This is most relevant for the HeI, HeII, and

high-mass HI convection zones, as these have Rayleigh

numbers that cross the threshold from sub-critical (sta-

ble) to super-critical (unstable) (Jermyn et al. 2022).

The actual stability of a convection zone is determined

by the radial profile of the Rayleigh number. For cases

where the average Rayleigh number is close to the crit-

ical value, it is important to solve the global stability

problem to determine if the CZ is stable or not. If the

Rayleigh number is everywhere subcritical, the putative

CZ should be stable.

Stellar convection at moderate Rayleigh numbers is

likely dominated by thermal structures with aspect ra-
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tios near unity which are very diffusive. These will or-

ganize into “roll” structures with predominantly hori-

zontal vorticity, which exhibit dynamics such as spiral

defect chaos (e.g. Vitral et al. 2020). Although the ther-

mal structures may be diffusive, the flows are still highly

turbulent (e.g. Pandey et al. 2018; Pandey et al. 2021)

due to the values of Pr � 1 and Re � 1. This may be

important for studying the convective zone boundary,

mixing, and/or interaction with waves.

5.3.5. Stratification

Stratification effects are strongest in Deep Envelope

CZs, where the density can vary by four to seven or-

ders of magnitude across the CZ. Fundamentally, den-

sity stratification breaks the symmetry of convective up-

flows and downflows, leading to intense, fast, narrow

downflows and broad, slower, diffuse upflows. Global

simulations suggest that these broad upflows, named

“giant cells,” should imprint on surface convection flows,

but there is debate and disagreement regarding whether

or not these flows are observed in the Sun (Hanasoge

et al. 2016). It is possible that rotation influences giant

cells in a way that changes their observational signature

(Featherstone & Hindman 2016; Vasil et al. 2021). It is

also possible that high density stratification turns cold

downflows into small, fast features called “entropy rain”

(Brandenburg 2016; Anders et al. 2019). The very low

diffusivities present in stars could allow small downflows

to traverse the full depth of these stratified CZs without

diffusing, but modern convection simulations generally

do not have enough spatial resolution (or have too large

diffusivity) to resolve these motions. In summary, strat-

ification breaks symmetry, but the precise consequences

of this symmetry breaking on convective dynamics and

observed phenomena is not clear.

5.3.6. Super-Eddington Convection

When the radiative energy flux through the system is

locally super-Eddington the hydrostatic solution devel-

ops a density inversion and becomes unstable to convec-

tion (Joss et al. 1973). In deep stellar interiors the ther-

mal energy density is large enough that convection can

carry most of the energy flux. This lowers the radiative

flux, allowing it to remain sub-Eddington and eliminat-

ing the density inversion (Jiang et al. 2015). Convec-

tion is then sustained by the usual superadiabatic tem-

perature gradient. In this way the convective cores of

very massive stars can remain nearly hydrostatic despite

super-Eddington total energy fluxes.

On the other hand in near-surface layers where con-

vection becomes inefficient convection may not able to

carry enough heat and the radiative flux can stay super-

Eddington. Radiative acceleration can then drive a den-

sity inversion in late-type stars, and in luminous stars

can even drive outflows (Owocki & Shaviv 2012; Jiang

et al. 2018). This is what happens in the FeCZ at high

masses.

5.3.7. Radiation Pressure

Even in sub-Eddington systems radiation pressure can

play a role by changing the effective polytropic index

of the adiabat (i.e. γ → 4/3 as βrad → 1). We are

We are not aware of studies addressing effects of high-

β convection, which suggests it could be interesting to

study this limit, and in particular to compare otherwise-

identical systems both including and excluding radiation

pressure to understand what differences arise.

5.3.8. Radiative Transfer

Radiation pressure and a high Eddington ratio can

substantially affect the nature of convection (Joss et al.

1973; Shaviv 1998; Paxton et al. 2013). The resulting

dynamics depends sensitively on the ratio of the photon

diffusion time to the dynamical time (Jiang et al. 2015).

This determines whether calculations can use a simpli-

fied diffusive treatment of radiation, or if they need to

use full radiative transfer.

In Core CZs the photon diffusion time is long, so while

both βrad and ΓEdd approach unity there it is still suit-

able to treat radiation in the diffusion approximation

(e.g. as done by Augustson et al. 2016).

By contrast, in the FeCZ in massive stars the photon

diffusion time is comparable or shorter than the dynam-

ical timescale. Moreover, the FeCZ has βrad,ΓEdd ∼ 1.

Such zones thus must be studied using full radiative

transfer (Jiang et al. 2015, 2017, 2018; Schultz et al.

2020, 2022).

5.3.9. Stiffness and the Péclet number

The stiffness of a convective boundary determines the

extent of overshooting past the edge of the boundary.

All of the upper boundaries we examined are extremely

stiff except for the HI CZ, which has Souter ∼ 0.1 − 1,

and Deep Envelope CZs, which have Souter ∼ 0.1 − 10

when they don’t extend all the way to the surface of the

model. This suggests that motions could carry a decent

fraction of a scale-height past the upper boundary of the

HI CZ, which might cause observable motions at the

photosphere and so could conceivably explain some of

the observed macro/microturbulence (Landstreet et al.

2009). The connection between (near-)surface convec-

tion and surface velocity fields is well established in the

regime of late-type stars (e.g. Asplund et al. 2000; Col-

let et al. 2007; Mathur et al. 2011; Bergemann et al.

2012; Steffen et al. 2013; Trampedach et al. 2013), but

is still under investigation for early-type stars (Cantiello
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et al. 2009; Jiang et al. 2015; Schultz et al. 2020, 2022).

Most of the lower boundaries are similarly stiff, though

the low-mass HI CZs and the FeCZ both have relatively

low-stiffness lower boundaries with Sinner ∼ 10 − 100.

This could be responsible for some chemical mixing be-

neath these CZs.

When Pe is small, radiative diffusion dominates over

advection and the motion becomes effectively isothermal

rather than adiabatic. Overshooting convective flows

feel a reduced stiffness, and so can extend further than

the stiffness alone would suggest. This may be why 3D

calculations show that motions from the FeCZ extend

far beyond 1D predictions and up to the stellar surface

(Jiang et al. 2015, 2018), and could account for some of

the observed stellar variability and surface turbulence

in stars with near-surface thin ionization CZs (Cantiello

et al. 2021; Schultz et al. 2022; Elliott et al. 2022). This

said, other processes than near-surface convection could

be important in driving the observed surface velocity

fields (see e.g. Aerts et al. 2009; Rogers et al. 2013).

5.3.10. Transonic Convection

Thermodynamic perturbations in a convection zone

scale like the square Mach number (Anders & Brown

2017). Flows with Mach numbers approaching one at

the photospheres of Deep Envelope convection zones can

therefore add to the stellar photometric variability, par-

ticipating to the “bolometric flicker” observed in light

curves (Trampedach et al. 1998; Ludwig 2006; Mathur

et al. 2011; Chiavassa et al. 2014; Van Kooten et al.

2021). Improved models of high-Mach number surface

convection can therefore assist in cleaning photometric

lightcurves and assist in exoplanet detection.

We also observe high Mach number flows in the

opacity-driven HI and Fe CZs. Local models of these

regions have been studied by e.g., Jiang et al. (2015)

and Schultz et al. (2022), who observed that the large

thermal perturbations associated with this convection

created low-density, optically-thin “chimneys” through

which radiation could escape the star directly. Turbu-

lent motions driven by these high Mach number regions

is a candidate for the origin of observed low-frequency

variability (Cantiello et al. 2021).

In summary, transonic (high-Mach number) convec-

tion occurs in various convective regions near the sur-

faces of both early and late type stars, and the large

thermodynamic perturbations associated with this con-

vection can generate short-timescale variability of the

stellar luminosity.

5.4. The Road to 3D Stellar Evolution

The study of stars has relied heavily on one-

dimensional stellar evolution calculations. Three-

dimensional stellar evolution calculations are not yet fea-

sible due to the formidable range of spatial and temporal

scales characterizing the problem. For example, the av-

erage Reynolds number in the solar convection zone is

about 1012. Assuming a Kolmogorov spectrum of tur-

bulence, the range of scales that need to be resolved

to achieve an accurate and resolved direct numerical

simulation is then `max/`min ∼Re3/4 ∼ 109. Such a

simulation would need about 1027 resolution elements,

while the largest hydrodynamic simulations currently

use ∼ 1012.

Similarly, simulations that aim to capture the full dy-

namics of convection on the longer timescales of stellar

evolution (thermal and nuclear) would require an enor-

mous number of timesteps. For example the dynam-

ical timescale in the solar convection zone is of order

an hour, while the thermal and nuclear timescales are

107 yr and 1010 yr, respectively. Assuming one timestep

per dynamical timescale (a vast underestimate), this im-

plies that ∼ 1011−14 timesteps would be needed to re-

solve the solar convection zone for a thermal (nuclear)

timescale, exceeding the number of steps achieved in

state-of-the-art multidimensional numerical simulations

(e.g. ∼ 4 × 108, Anders et al. 2021) by many orders of

magnitude.

Even assuming that Moore’s law will continue to hold,

a fully resolved stellar turbulence calculation of solar

convection will not be achievable for 1.5 log2 1015 ∼
50 years (e.g. Meakin 2008). A similar calculation

protracted for a full thermal (nuclear) timescale is

1.5 log2 1020 ∼ 70 years (1.5 log2 1023 ∼ 80 years) away.

It is clear, then, that one-dimensional stellar evolution

calculations will remain an important tool for decades

to come. At the same time, the last decade has marked

a transition to a new landscape in the theoretical study

of stars.

Driven by progress in both hardware and numeri-

cal schemes, multi-dimensional calculations are becom-

ing common tools for studying stellar interiors. Even

though these calculations do not resolve the full range

of relevant scales, it is likely that many of the flow fea-

tures they reveal are robust to varying resolution. While

this is not guaranteed to be true in all cases (e.g. in mag-

netohydrodynamic systems or other setups with inverse

cascades), and so must be checked carefully, numerical

simulations can provide valuable insight into real astro-

physical situations.

As computers and numerical methods become more

and more powerful, new problems in stellar convection

become accessible to numerical study. Our aim with this

atlas is to provide a guide useful for the next generation

of stellar physicists performing numerical simulations of
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stellar convection. Our “maps” illuminate the range of

parameters involved in such numerical efforts, and our

hope is that they will be used by modellers to better

navigate this landscape.
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APPENDIX

A. DIFFUSIVITIES

A.1. Viscosity

Computing the viscosity of a plasma is complicated. For simplicity we use the viscosity of pure hydrogen plus

radiation, so that

ν ≈ νie + νrad. (A1)

The radiation component is (Spitzer 1962)

νrad =
4aT 4

15cκρ2
, (A2)

where a is the radiation gas constant. We obtain the hydrogen viscosity using the Braginskii-Spitzer formula (Braginskii

1957; Spitzer 1962)

νie ≈ 2.21× 10−15
(T/K)5/2

(ρ/g cm−3) ln Λ
cm2 s−1, (A3)

where ln Λ is the Coulomb logarithm, given for hydrogen by (Wendell et al. 1987)

ln Λ = −17.9 + 1.5 ln
T

K
− 0.5 ln

ρ

g cm−3
(A4)

for temperatures T < 4.2× 105 K and

ln Λ = −11.5 + ln
T

K
− 0.5 ln

ρ

g cm−3
(A5)

for T > 4.2 × 105 K. Corrections owing to different compositions are generally small relative to the many orders of

magnitude we are interested in here. For instance the difference between pure hydrogen and a cosmic mixture of

hydrogen and helium is under 30% (Balbus & Henri 2008).

A.2. Thermal Diffusion

Thermal diffusion in main-sequence stars is dominated by photons, resulting in the radiative diffusivity

χ ≡ 16σT 3

3κcpρ2
. (A6)

A.3. Electrical Conductivity

We use routines built into MESA to compute the conductivity σ. These routines were provided by (Yoon 2003)

and follow the formula of Spitzer (1962), with a Coulomb logarithm computed by Wendell et al. (1987). Given σ, the

magnetic diffusivity is computed via

η =
c2

4πσ
. (A7)

B. MESA

The MESA EOS is a blend of the OPAL (Rogers & Nayfonov 2002), SCVH (Saumon et al. 1995), FreeEOS (Irwin

2004), HELM (Timmes & Swesty 2000), PC (Potekhin & Chabrier 2010), and Skye (Jermyn et al. 2021) EOSes.

Radiative opacities are primarily from OPAL (Iglesias & Rogers 1993, 1996), with low-temperature data from

Ferguson et al. (2005) and the high-temperature, Compton-scattering dominated regime by Poutanen (2017). Electron

conduction opacities are from Cassisi et al. (2007).

Nuclear reaction rates are from JINA REACLIB (Cyburt et al. 2010), NACRE (Angulo et al. 1999) and additional

tabulated weak reaction rates Fuller et al. (1985); Oda et al. (1994); Langanke & Mart́ınez-Pinedo (2000). Screening

is included via the prescription of Chugunov et al. (2007). Thermal neutrino loss rates are from Itoh et al. (1996).

Models were constructed on the pre-main sequence with Z = 0.014, Y = 0.24 + 2Z, and X = 1−Y −Z and evolved

from there. We neglect rotation and associated chemical mixing.
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Figure 2. The angular velocity Ω is shown in terms of log Teff/spectral type and logL for stellar models with Milky Way
metallicity Z = 0.014. Note that for Sun-like stars we predict angular velocities of just under 10−4rad s−1..

C. DATA AVAILABILITY

The inlists and run scripts used in producing the HR diagrams in this work are available in this other GitHub

repository on the atlas branch in the commit with short-sha 701d74d9. The data those scripts produced are available

in Jermyn et al. (2022a), along with the plotting scripts used in this work.

D. ROTATION LAW

Throughout this work we choose a typical Ω corresponding to a surface velocity of 150 km s−1 for O-F stars (down to

1.2M�). From 1.2M� to 0.8M� we vary the surface velocity linearly down to 3 km s−1, and treat it as constant below

this point. This simple form approximately reproduces the inferred equatorial velocities from v sin i measurements

by Glebocki & Gnacinski (2005), the typical equatorial velocities reported by Ramı́rez-Agudelo et al. (2013), and the

rotation period inferred from Kepler observations by (Nielsen et al. 2013) for B-M stars. Binary interactions can,

of course, change the relevant velocities (de Mink et al. 2013), though in general we expect the dominant variation

in rotation-related quantities to be due to variation in the properties of convection and not variation in the rotation

periods.

E. AVERAGING SENSITIVITY

We had many choices in how to average different quantities, so it is worth performing a sensitivity analysis. Figure 3

shows the Prandtl number computed both by averaging ν and χ independently and by averaging ν/χ directly. This

was chosen as a particularly simple quantity, and we show it for each convection zone. For all but the Deep Envelope

CZs the differences are small (. 2×), but for the Deep Envelope zones we see differences of up to 105, motivating our

choice to additionally show quantities near the inner and outer boundaries of Deep Envelope CZs.

https://github.com/adamjermyn/conv_trends
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Figure 3. The difference between the Prandtl number computed by averaging ν and χ radially and that computed by radially
averaging ν/χ is shown in terms of log Teff and logL for stellar models with core convection zones and Milky Way metallicity
Z = 0.014. Different panels show different convection zones. For all but the Deep Envelope CZs the differences are small (. 2×),
but for the Deep Envelope zones we see differences of up to 105.
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Figure 4. The aspect ratio A is shown in terms of log Teff/spectral type and logL for stellar models with deep envelope
convection zones and Milky Way metallicity Z = 0.014. Note that the aspect ratio is an input parameter, and does not depend
on a specific theory of convection.

F. CONVECTION ZONE HR DIAGRAMS

F.1. Deep Envelope CZ

Here we examine Deep Envelope convection zones, which occur in low-mass stars (M? . 1.2M�). Because these

zones are strongly density-stratified, we first examine averages over the entire CZ and then compare those with averages

over just the innermost and outermost pressure scale heights.

F.1.1. Whole-Zone Averages

We begin with the bulk structure of Deep Envelope CZs. Figure 4 shows the aspect ratio A, which ranges from

3− 10. These small-to-moderate aspect ratios suggest that the global (spherical shell) geometry could be important.

Next, the density ratio D (Figure 5, left) and Mach number Ma (Figure 5, right) inform which physics the fluid

equations must include to model these zones. Deep Envelope CZs are strongly density-stratified, so the Boussinesq

approximation is likely insufficient to study them. For the most part convection in these zones is also highly subsonic.

This, along with the density ratio, suggests it is appropriate to use the anelastic approximation. However, near the

surface vc becomes large and the fully compressible equations may be necessary (Section F.1.2).

The Rayleigh number Ra (Figure 6, left) determines whether or not a putative convection zone is actually unstable

to convection, and the Reynolds number Re determines how turbulent the zone is if instability sets in (Figure 6, right).

In these zones both numbers are enormous, so we should expect convective instability to result in highly turbulent

flows.

The optical depth across a convection zone τCZ (Figure 7, left) indicates whether or not radiation can be handled in

the diffusive approximation, while the optical depth from the outer boundary of the convection zone to infinity τouter
(Figure 7, right) indicates the nature of radiative transfer and cooling in the outer regions of the convection zone. We

see that the optical depth across these zones is enormous (τCZ ∼ 1011) but their outer boundaries lie at very small

optical depths (τouter ∼ 1). This means that the bulk of the CZ can be modeled in the limit of radiative diffusion, but

the dynamics of the outer regions likely require radiation hydrodynamics.

The Eddington ratio ΓEdd (Figure 8, left) indicates whether or not radiation hydrodynamic instabilities are important

in the non-convecting state, and the radiative Eddington ratio Γrad
Edd (Figure 8, right) indicates the same in the developed

convective state. Here we see that in the absence of convection Deep Envelope CZs would reach moderate ΓEdd ∼ 0.3,

but because convection transports some of the flux this is reduced to . 0.1 and radiation hydrodynamic instabilities

are unlikely to matter.

The Prandtl number Pr (Figure 9, left) measures the relative importance of thermal diffusion and viscosity, and the

magnetic Prandtl number Pm (Figure 9, right) measures the same for magnetic diffusion and viscosity. We see that

both are very small, so the thermal diffusion and magnetic diffusion length-scales are much larger than the viscous

scale.
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Figure 5. The density ratio D (left) and Mach number Ma (right) are shown in terms of log Teff/spectral type and logL for
stellar models with deep envelope convection zones and Milky Way metallicity Z = 0.014. Note that while the density ratio is
an input parameter and does not depend on a specific theory of convection, the Mach number is an output of such a theory and
so is model-dependent.
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Figure 6. The Rayleigh number Ra (left) and Reynolds number Re (right) are shown in terms of log Teff/spectral type and
logL for stellar models with deep envelope convection zones and Milky Way metallicity Z = 0.014. Note that while the Rayleigh
number is an input parameter and does not depend on a specific theory of convection, the Reynolds number is an output of
such a theory and so is model-dependent.

The radiation pressure ratio βrad (Figure 10) measures the importance of radiation in setting the thermodynamic

properties of the fluid. We see that this is uniformly small and so radiation pressure likely plays a sub-dominant role

in these zones.

The Ekman number Ek (Figure 11) indicates the relative importance of viscosity and rotation. This is tiny across

the HRD, so we expect rotation to dominate over viscosity, except at very small length-scales.

The Rossby number Ro (Figure 12, left) measures the relative importance of rotation and inertia. This is small,

so these zones are strongly rotationally constrained for typical rotation rates (Nielsen et al. 2013), though becoming

less so towards higher masses. This is also strongly depth-dependent (Section F.1.2), and near the surface vc becomes

large and flows are typically not rotationally constrained.

We have assumed a fiducial rotation law to calculate Ro. Stars exhibit a variety of different rotation rates, so we

also show the convective turnover time tconv (Figure 12, right) which may be used to estimate the Rossby number for

different rotation periods.
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Figure 7. The convection optical depth τCZ (left) and the optical depth to the surface τouter (right) are shown in terms of
log Teff/spectral type and logL for stellar models with deep envelope convection zones and Milky Way metallicity Z = 0.014.
Note that both of these are input parameters, and do not depend on a specific theory of convection.
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Figure 8. The Eddington ratio with the full luminosity ΓEdd (left) and the radiative luminosity (right) are shown in terms of
log Teff/spectral type and logL for stellar models with deep envelope convection zones and Milky Way metallicity Z = 0.014.
Note that while ΓEdd is an input parameter and does not depend on a specific theory of convection, Γrad

Edd is an output of such
a theory and so is model-dependent.

The Péclet number Pe (Figure 13, left) measures the relative importance of advection and diffusion in transporting

heat, and the flux ratio Fconv/F (Figure 13, right) reports the fraction of the energy flux which is advected. The

former is large and the latter is near-unity, so we conclude that convection in these zones is highly efficient, and heat

transport is dominated by advection.

Figure 14 shows that the base of the envelope convection zone is always extremely stiff, with S ∼ 104−8. We expect

very little mechanical overshooting as a result, though there could still well be convective penetration (Anders et al.

2021).

F.1.2. Inner and Outer Scale Heights

Because Deep Envelope CZs are strongly stratified their properties vary tremendously with depth. We now examine

this variation by considering some of the same quantities averaged just over the innermost or outermost pressure scale

heights. For this section only we evaluate Ek, Re, Pe, and Ro using the pressure scale height at the relevant boundary

rather than the full size of the convection zone δr. We do this to focus on the dynamics of motions near the boundary.
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Figure 9. The Prandtl number Pr (left) and magnetic Prandtl number Pm (right) are shown in terms of log Teff/spectral type
and logL for stellar models with deep envelope convection zones and Milky Way metallicity Z = 0.014. Note that both Pr and
Pm are input parameters, and so do not depend on a specific theory of convection.
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Figure 10. The radiation pressure ratio βrad is shown in terms of log Teff/spectral type and logL for stellar models with deep
envelope convection zones and Milky Way metallicity Z = 0.014. Note that βrad does not depend on the steady state convective
velocity or temperature gradient, so it is not sensitive to the choice of convection theory.

Figure 15 shows the Mach number Ma. The Mach number shows important differences, being much larger in the

outermost pressure scale (left) than the innermost one (right), and reaches 0.3 at the outer boundaries of more massive

stars (M ≈ 1.1M�). So, while the innermost regions of these zones are well-modeled by the anelastic approximation,

the near-surface regions likely require using the fully compressible equations.

Figure 16 shows the Reynolds number Re. The Reynolds number shows a larger range of values near the outer

boundary than near the inner one, but centered on similar typical values of ∼ 1012. This indicates well-developed

turbulence near both boundaries.

Figure 17 shows the Prandtl number Pr (upper) and magnetic Prandtl number Pm (lower). Both are much smaller

near the outer boundary of the convection zone (left) than the inner boundary (right), though the difference is much

more stark (∼ 102 − 105) for the Prandtl number than for the magnetic Prandtl number (∼ 101 − 103). Both remain

small near both boundaries, however, so the qualitative features of convection that they reflect are unchanged through

the zone.

Figure 18 shows the Eddington ratios ΓEdd (upper) and Γrad
Edd (lower). These are both small at both boundaries, so

there is no significant difference in the regime of convection between the two boundaries.
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Figure 11. The Ekman number Ek is shown in terms of log Teff/spectral type and logL for stellar models with deep envelope
convection zones and Milky Way metallicity Z = 0.014. Note that the Ekman number is an input parameter, and does not
depend on a specific theory of convection.
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Figure 12. The Rossby number Ro (left) and turnover time tconv (right) are shown in terms of log Teff/spectral type and logL
for stellar models with deep envelope convection zones and Milky Way metallicity Z = 0.014. Note that both Ro and tconv are
outputs of a theory of convection and so are model-dependent.

Figure 19 shows the radiation pressure ratio βrad. The radiation pressure ratio is smaller by a factor of 10 − 100

near the outer boundary of the convection zone (left) than the inner boundary (right), though it remains less than one

percent in both cases and so radiation pressure may be safely ignored in these convection zones.

Figure 20 shows the Rossby number Ro (upper) and Ekman number Ek (lower). The Rossby number is somewhat

larger near the outer boundary than near the inner one. Importantly, the Rossby number near the outer boundary is

larger than unity, meaning that the flows are not rotationally constrained. This is in contrast to both the average and

inner boundary values, which have Ro � 1 and indicate strong rotational constraints. This suggests that rotation is

quite important for the bulk of these zones, but can be safely neglected in their outer regions.

The Ekman number, by contrast, is similar between the two boundaries. Though the Ekman number is much smaller

at the inner boundary than the outer one, it is tiny in both regions. Hence throughout the zone we expect rotation to

dominate over viscosity, except at very small length-scales.

Figure 21 shows the Péclet number Pe (upper) and Fconv/F (lower). The Péclet number is quite a bit smaller near

the outer boundary than near the inner one, by factors of 102−104. Both quantities lie in the same qualitative regimes

near both boundaries: the Péclet number indicates that advection dominates diffusion in the heat equation, and the

flux ratio indicates that convection carries a substantial fraction of the flux. The flux ratio is similar near the inner
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Figure 13. The Péclet number Pe (left) and Fconv/F (right) are shown in terms of log Teff/spectral type and logL for stellar
models with deep envelope convection zones and Milky Way metallicity Z = 0.014. Note that both Pe and Fconv/F are outputs
of a theory of convection and so are model-dependent.
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Figure 14. The stiffness of the inner convective boundary is shown in terms of log Teff and logL for stellar models with deep
envelope convection zones and Milky Way metallicity Z = 0.014. Note that the stiffness is an output of a theory of convection
and so is model-dependent.

and outer boundaries of the convection zone, though it takes on a wider range of values near the outer boundary than

the inner one. Near both boundaries though it is smaller than in the bulk of the zone, which matches the intuition that

convection ought to be more efficient in the bulk than near the boundaries. The difference between the boundaries

and bulk is as large as it is because the ratio ∇rad/∇ad is a gradual one near both boundaries.
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Figure 15. The Mach number Ma is shown averaged over the outermost pressure scale height (left) and innermost one (right)
in terms of log Teff/spectral type and logL for stellar models with deep envelope convection zones and Milky Way metallicity
Z = 0.014. Note that the Mach number is an output of a theory of convection and so is model-dependent.
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Figure 16. The Reynolds number Re is shown averaged over the outermost pressure scale height (left) and innermost one (right)
in terms of log Teff/spectral type and logL for stellar models with deep envelope convection zones and Milky Way metallicity
Z = 0.014. Note that the Reynolds number is an output of a theory of convection and so is model-dependent.
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Figure 17. The Prandtl number Pr (upper) and magnetic Prandtl number Pm (lower) are shown averaged over the outermost
pressure scale height (left) and innermost one (right) in terms of log Teff/spectral type and logL for stellar models with deep
envelope convection zones and Milky Way metallicity Z = 0.014. Note that both Pr and Pm are input parameters, and so do
not depend on a specific theory of convection.
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Figure 18. The Eddington ratio with the full luminosity ΓEdd (upper) and the radiative luminosity (lower) are shown averaged
over the outermost pressure scale height (left) and innermost one (right) in terms of log Teff/spectral type and logL for stellar
models with deep envelope convection zones and Milky Way metallicity Z = 0.014. Note that while ΓEdd is an input parameter
and does not depend on a specific theory of convection, Γrad

Edd is an output of such a theory and so is model-dependent.
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Figure 19. The radiation pressure ratio βrad is shown averaged over the outermost pressure scale height (left) and innermost
one (right) in terms of log Teff/spectral type and logL for stellar models with deep envelope convection zones and Milky Way
metallicity Z = 0.014.
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Figure 20. The Rossby number Ro (upper) is shown averaged over the outermost pressure scale height (left) and innermost
one (right) in terms of log Teff/spectral type and logL for stellar models with deep envelope convection zones and Milky Way
metallicity Z = 0.014. Note that both numbers were calculated here using the pressure scale height at the relevant boundary
rather than the full width of the convection zone δr.
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Figure 21. The Péclet number Pe (upper) and Fconv/F (lower) are shown averaged over the outermost pressure scale height
(left) and innermost one (right) in terms of log Teff/spectral type and logL for stellar models with deep envelope convection
zones and Milky Way metallicity Z = 0.014. Note that these quantities are calculated here using the pressure scale height at
the relevant boundary rather than the full width of the convection zone δr.
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Figure 22. The aspect ratio A is shown in terms of log Teff/spectral type and logL for stellar models with HI CZs and Milky
Way metallicity Z = 0.014. Note that the aspect ratio is an input parameter, and does not depend on a specific theory of
convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

F.2. HI CZ

We now examine the bulk structure of HI CZs, which occur in the subsurface layers of stars with masses 1.2M� .
M? . 3M�. Unlike in the case of Deep Envelope CZs, the HI CZs show large enough variation in all studied parameters

to encompass many different regimes. In this section the boundary between “low” and “high” masses is ∼ 1.5M�.

Note that in some regions of the HR diagram this convection zone has a Rayleigh number below the ∼ 103 critical

value (Chandrasekhar 1961). As a result while the region is superadiabatic, it is not unstable to convection. We

therefore neglect these stable regions in our analysis, and shade them in grey in our figures.

Figure 22 shows the aspect ratio A, which ranges from 10 − 3000. These large aspect ratios suggest that local

simulations are likely sufficient to capture their dynamics.

Next, the density ratio D (Figure 23, left) and Mach number Ma (Figure 23, right) inform which physics the fluid

equations must include to model these zones. At low masses the density ratio is large while at higher masses it is

near-unity. Likewise at low masses the Mach number is moderate (∼ 0.3) while at high masses it is small (10−5). This,

along with the density ratio, suggests it is appropriate to use the Boussinesq approximation at high masses, while the

fully compressible equations are necessary at low masses.

The Rayleigh number Ra (Figure 24, left) determines whether or not a putative convection zone is actually unstable

to convection, and the Reynolds number Re determines how turbulent the zone is if instability sets in (Figure 24,

right). At low masses the Rayleigh number is large (1025), at high masses it plummets and eventually becomes sub-

critical, which we show in grey. Likewise at low masses the Reynolds number is large (1013) while at high masses it

is quite small (∼ 1). These putative convection zones then span a wide range of properties, from being subcritical

and stable (Chandrasekhar 1961) at high masses, to being marginally unstable and weakly turbulent at intermediate

masses (∼ 2M�), to eventually being strongly unstable and having well-developed turbulence at low masses.

The optical depth across a convection zone τCZ (Figure 25, left) indicates whether or not radiation can be handled

in the diffusive approximation, while the optical depth from the outer boundary to infinity τouter (Figure 25, right)

indicates the nature of radiative transfer and cooling in the outer regions of the convection zone. The surface of the

HI CZ is always at low optical depth (τouter ∼ 1), meaning that radiation hydrodynamics is likely necessary near the

outer boundary of this zone. By contrast, the optical depth across the HI CZ is low at high masses (∼ 1 − 10) and

large at low masses (103+). This implies that radiation hydrodynamics is necessary to model the bulk of the HI CZ

at high masses, but not at low masses.

The Eddington ratio ΓEdd (Figure 26, left) indicates whether or not radiation hydrodynamic instabilities are impor-

tant in the non-convecting state, and the radiative Eddington ratio Γrad
Edd (Figure 26, right) indicates the same in the

developed convective state. Both ratios are small in the HI CZ, so radiation hydrodynamic instabilities are unlikely

to matter.
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Figure 23. The density ratio D (left) and Mach number Ma (right) are shown in terms of log Teff/spectral type and logL for
stellar models with HI CZs and Milky Way metallicity Z = 0.014. Note that while the density ratio is an input parameter and
does not depend on a specific theory of convection, the Mach number is an output of such a theory and so is model-dependent.
Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 24. The Rayleigh number Ra (left) and Reynolds number Re (right) are shown in terms of log Teff/spectral type and
logL for stellar models with HI CZs and Milky Way metallicity Z = 0.014. Note that while the Rayleigh number is an input
parameter and does not depend on a specific theory of convection, the Reynolds number is an output of such a theory and so
is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.

The Prandtl number Pr (Figure 27, left) measures the relative importance of thermal diffusion and viscosity, and the

magnetic Prandtl number Pm (Figure 27, right) measures the same for magnetic diffusion and viscosity. The Prandtl

number is always small in these models, so the thermal diffusion length-scale is much larger than the viscous scale.

By contrast, the magnetic Prandtl number varies from small at low masses to large at high masses.

The fact that Pm is large at high masses is notable because the quasistatic approximation for magnetohydrodynam-

ics has frequently been used to study magnetoconvection in minimal 3D MHD simulations of planetary and stellar

interiors (e.g. Yan et al. 2019) and assumes that Rm = PmRe→ 0; in doing so, this approximation assumes a global

background magnetic field is dominant and neglects the nonlinear portion of the Lorentz force. This approximation

breaks down in convection zones with Pm > 1 and future numerical experiments should seek to understand how

magnetoconvection operates in this regime.
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Figure 25. The convection optical depth τCZ (left) and the optical depth to the surface τouter (right) are shown in terms of
log Teff/spectral type and logL for stellar models with HI CZs and Milky Way metallicity Z = 0.014. Note that both of these
are input parameters, and do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection
and shaded in grey.
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Figure 26. The Eddington ratio with the full luminosity ΓEdd (left) and the radiative luminosity (right) are shown in terms
of log Teff/spectral type and logL for stellar models with HI CZs and Milky Way metallicity Z = 0.014. Note that while ΓEdd

is an input parameter and does not depend on a specific theory of convection, Γrad
Edd is an output of such a theory and so is

model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.

The radiation pressure ratio βrad (Figure 28) measures the importance of radiation in setting the thermodynamic

properties of the fluid. We see that this is uniformly small (. 0.1) and so radiation pressure likely plays a sub-dominant

role in these zones.

The Ekman number Ek (Figure 29) indicates the relative importance of viscosity and rotation. This is tiny across

the HRD 4, so we expect rotation to dominate over viscosity, except at very small length-scales.

The Rossby number Ro (Figure 30, left) measures the relative importance of rotation and inertia. This is small at

high masses but greater than unity at low masses, meaning that the HI CZ is rotationally constrained at high masses

but not at low masses for typical rotation rates (Nielsen et al. 2013).

4 Note that, because the Prandtl number is also very small, this
does not significantly alter the critical Rayleigh number (see
Ch3 of Chandrasekhar (1961) and appendix D of Jermyn et al.
(2022)).
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Figure 27. The Prandtl number Pr (left) and magnetic Prandtl number Pm (right) are shown in terms of log Teff/spectral
type and logL for stellar models with HI CZs and Milky Way metallicity Z = 0.014. Note that both Pr and Pm are input
parameters, and so do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection and
shaded in grey.
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Figure 28. The radiation pressure ratio βrad is shown in terms of log Teff/spectral type and logL for stellar models with HI CZs
and Milky Way metallicity Z = 0.014. Note that this ratio is an input parameter, and does not depend on a specific theory of
convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

We have assumed a fiducial rotation law to calculate Ro. Stars exhibit a variety of different rotation rates, so we

also show the convective turnover time tconv (Figure 30, right) which may be used to estimate the Rossby number for

different rotation periods.

The Péclet number Pe (Figure 31, left) measures the relative importance of advection and diffusion in transporting

heat, and the flux ratio Fconv/F (Figure 31, right) reports the fraction of the energy flux which is advected. Both

exhibit substantial variation with mass. The Péclet number varies from large (104) at low masses to very small at

high masses (10−9), and the flux ratio similarly varies from near-unity at low masses to tiny (10−16) at high masses.

That is, there is a large gradient in convective efficiency with mass, with efficient convection at low masses and very

inefficient convection at high masses.

Of particular interest at intermediate masses (1.5M� . M . 1.7M�) are stars for which the Reynolds number is

still large (Re > 104) but the Péclet number is small (Pe < 1). In these stars the HI CZ should exhibit turbulent

velocity fields but very laminar thermodynamic fields, which could be quite interesting to study numerically.
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Figure 29. The Ekman number Ek is shown in terms of log Teff/spectral type and logL for stellar models with HI CZs and
Milky Way metallicity Z = 0.014. Note that the Ekman number is an input parameter, and does not depend on a specific
theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 30. The Rossby number Ro (left) and turnover time tconv (right) are shown in terms of log Teff/spectral type and logL
for stellar models with HI CZs and Milky Way metallicity Z = 0.014. Note that both Ro and tconv are outputs of a theory of
convection and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.

We further note that at the low mass end the Mach number is moderate (∼ 0.3) high Fconv/F is near-unity, so

convection likely produces a significant luminosity in internal gravity waves (Goldreich & Kumar 1990; Lecoanet &

Quataert 2013).

Finally, Figure 32 shows the stiffness of both the inner and outer boundaries of the HI CZ. Both range from very

stiff (S ∼ 104−8) to very weak (S ∼ 1), with decreasing stiffness towards decreasing mass. For instance, for masses

M & 1.5M� we do not expect much mechanical overshooting, whereas for M . 1.5M� both boundaries should show

substantial overshooting, because their low stiffness causes convective flows to decelerate over large length scales.

Note that at the inner boundary the stiffness shows sharp changes along evolutionary tracks. This is because the

emergence of the HeI CZ just below the HI CZ makes the typical radiative N2 near the lower boundary of the HI CZ

much smaller, thereby reducing the stiffness.
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Figure 31. The Péclet number Pe (left) and Fconv/F (right) are shown in terms of log Teff/spectral type and logL for stellar
models with HI CZs and Milky Way metallicity Z = 0.014. Note that both Pe and Fconv/F are outputs of a theory of convection
and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 32. The stiffness of the inner (left) and outer (right) convective boundaries are shown in terms of log Teff and logL for
stellar models with HI CZs and Milky Way metallicity Z = 0.014. Note that the stiffness is an output of a theory of convection
and so is model-dependent. Regions with Ra < Racrit are stable against convection and shaded in grey.
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Figure 33. The aspect ratio A is shown in terms of log Teff/spectral type and logL for stellar models with HeI CZs and Milky
Way metallicity Z = 0.014. Note that the aspect ratio is an input parameter, and does not depend on a specific theory of
convection. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 34. The density ratio D (left) and Mach number Ma (right) are shown in terms of log Teff/spectral type and logL for
stellar models with HeI CZs and Milky Way metallicity Z = 0.014. Note that while the density ratio is an input parameter and
does not depend on a specific theory of convection, the Mach number is an output of such a theory and so is model-dependent.
Regions with Ra < Racrit are stable to convection and shaded in grey.

F.3. HeI CZ

We now examine the bulk structure of HeI CZs, which occur in the subsurface layers of stars with masses 2M� .
M? . 5M�. Note that in some regions of the HR diagram this convection zone has a Rayleigh number below the ∼ 103

critical value (Chandrasekhar 1961). As a result while the region is superadiabatic, it is not unstable to convection.

We therefore neglect these stable regions in our analysis, and shade them in grey in our figures.

Figure 33 shows the aspect ratio A, which is of order 103. These large aspect ratios suggest that local simulations

spanning the full depth of the CZ and only a fraction of 4π angularly can capture the convective dynamics.

Next, the density ratio D (Figure 34, left) and Mach number Ma (Figure 34, right) inform which physics the fluid

equations must include to model these zones. The density ratio is always of order unity, and the Mach number is

always small (. 10−4). This suggests it is always appropriate to use the Boussinesq approximation in modelling these

convection zones.

The Rayleigh number Ra (Figure 35, left) determines whether or not a putative convection zone is actually unstable

to convection, and the Reynolds number Re determines how turbulent the zone is if convection sets in (Figure 35,
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Figure 35. The Rayleigh number Ra (left) and Reynolds number Re (right) are shown in terms of log Teff/spectral type and
logL for stellar models with HeI CZs and Milky Way metallicity Z = 0.014. Note that while the Rayleigh number is an input
parameter and does not depend on a specific theory of convection, the Reynolds number is an output of such a theory and so
is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 36. The convection optical depth τCZ (left) and the optical depth to the surface τouter (right) are shown in terms of
log Teff/spectral type and logL for stellar models with HeI CZs and Milky Way metallicity Z = 0.014. Note that both of these
are input parameters, and do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection
and shaded in grey.

right). At low masses the Rayleigh number is slightly super-critical (104 − 105), at high masses it plummets and

eventually becomes sub-critical, which we show in grey. Likewise at low masses the Reynolds number is around the

threshold for turbulence to develop (∼ 103) while at high masses it is quite small (∼ 1). These putative convection

zones then span a wide range of properties, from being subcritical and stable at high masses, to being weakly unstable

and weakly turbulent at low masses (∼ 2M�).

The optical depth across a convection zone τCZ (Figure 36, left) indicates whether or not radiation can be handled

in the diffusive approximation, while the optical depth from the outer boundary to infinity τouter (Figure 36, right)

indicates the nature of radiative transfer and cooling in the outer regions of the convection zone. The surface of the

HeI CZ is always at moderate low optical depth in the unstable region (τouter ∼ 10), and the optical depth across the

HeI CZ is of the same order. This means that both the bulk and outer boundary of the HeI CZ can be treated within

the diffusive approximation for radiation.
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Figure 37. The Eddington ratio with the full luminosity ΓEdd (left) and the radiative luminosity (right) are shown in terms
of log Teff/spectral type and logL for stellar models with HeI CZs and Milky Way metallicity Z = 0.014. Note that while ΓEdd

is an input parameter and does not depend on a specific theory of convection, Γrad
Edd is an output of such a theory and so is

model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey. Note that the two panels appear very
similar because HeI CZs are so inefficient that they transport almost no flux, and so the radiative temperature gradient is very
similar to the realized temperature gradient in MLT.

The Eddington ratio ΓEdd (Figure 37, left) indicates whether or not radiation hydrodynamic instabilities are impor-

tant in the non-convecting state, and the radiative Eddington ratio Γrad
Edd (Figure 37, right) indicates the same in the

developed convective state. Both ratios are small in the HeI CZ, so radiation hydrodynamic instabilities are unlikely

to matter.

The Prandtl number Pr (Figure 38, left) measures the relative importance of thermal diffusion and viscosity, and the

magnetic Prandtl number Pm (Figure 38, right) measures the same for magnetic diffusion and viscosity. The Prandtl

number is always small in these models, so the thermal diffusion length-scale is much larger than the viscous scale. By

contrast, the magnetic Prandtl number is always greater than unity, and reaches nearly 102 in the unstable regions.

The fact that Pm is large is notable because the quasistatic approximation for magnetohydrodynamics has frequently

been used to study magnetoconvection in minimal 3D MHD simulations of planetary and stellar interiors (e.g. Yan et al.

2019) and assumes that Rm = PmRe→ 0; in doing so, this approximation assumes a global background magnetic field

is dominant and neglects the nonlinear portion of the Lorentz force. This approximation breaks down in convection

zones with Pm > 1 and future numerical experiments should seek to understand how magnetoconvection operates in

this regime.

The radiation pressure ratio βrad (Figure 39) measures the importance of radiation in setting the thermodynamic

properties of the fluid. We see that this is uniformly small (. 0.1) and so radiation pressure likely plays a sub-dominant

role in these zones.

The Ekman number Ek (Figure 40) indicates the relative importance of viscosity and rotation. This is tiny across

the HRD 5, so we expect rotation to dominate over viscosity, except at very small length-scales.

The Rossby number Ro (Figure 41, left) measures the relative importance of rotation and inertia. This is uniformly

small, meaning that the HeI CZ is rotationally constrained for typical rotation rates (Nielsen et al. 2013).

We have assumed a fiducial rotation law to calculate Ro. Stars exhibit a variety of different rotation rates, so we

also show the convective turnover time tconv (Figure 41, right) which may be used to estimate the Rossby number for

different rotation periods.

The Péclet number Pe (Figure 42, left) measures the relative importance of advection and diffusion in transporting

heat, and the flux ratio Fconv/F (Figure 42, right) reports the fraction of the energy flux which is advected. Both are

extremely small, meaning that these convection zones are very inefficient.

5 Note that, because the Prandtl number is also very small, this
does not significantly alter the critical Rayleigh number (see
Ch3 of Chandrasekhar (1961) and appendix D of Jermyn et al.
(2022)).
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Figure 38. The Prandtl number Pr (left) and magnetic Prandtl number Pm (right) are shown in terms of log Teff/spectral
type and logL for stellar models with HeI CZs and Milky Way metallicity Z = 0.014. Note that both Pr and Pm are input
parameters, and so do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection and
shaded in grey.
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Figure 39. The radiation pressure ratio βrad is shown in terms of log Teff/spectral type and logL for stellar models with
HeI CZs and Milky Way metallicity Z = 0.014. Note that this ratio is an input parameter, and does not depend on a specific
theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

Finally, Figure 43 shows the stiffness of both the inner and outer boundaries of the HeI CZ. Both are very stiff at all

masses (S ∼ 105−10), so we do not expect much mechanical overshooting, though there could still well be convective

penetration (Anders et al. 2021).
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Figure 40. The Ekman number Ek is shown in terms of log Teff/spectral type and logL for stellar models with HeI CZs and
Milky Way metallicity Z = 0.014. Note that the Ekman number is an input parameter, and does not depend on a specific
theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 41. The Rossby number Ro (left) and turnover time tconv (right) are shown in terms of log Teff/spectral type and logL
for stellar models with HeI CZs and Milky Way metallicity Z = 0.014. Note that both Ro and tconv are outputs of a theory of
convection and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey. Note that the
turnover time exhibits numerical noise related to the model mesh resolution because the integrand 1/vc diverges towards the
convective boundaries.
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Figure 42. The Péclet number Pe (left) and Fconv/F (right) are shown in terms of log Teff/spectral type and logL for stellar
models with HeI CZs and Milky Way metallicity Z = 0.014. Note that both Pe and Fconv/F are outputs of a theory of convection
and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 43. The stiffness of the inner (left) and outer (right) convective boundaries are shown in terms of log Teff and logL for
stellar models with HeI CZs and Milky Way metallicity Z = 0.014. Note that the stiffness is an output of a theory of convection
and so is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 44. The aspect ratio A is shown in terms of log Teff/spectral type and logL for stellar models with HeII CZs and Milky
Way metallicity Z = 0.014. Note that the aspect ratio is an input parameter, and does not depend on a specific theory of
convection. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 45. The density ratio D (left) and Mach number Ma (right) are shown in terms of log Teff/spectral type and logL for
stellar models with HeII CZs and Milky Way metallicity Z = 0.014. Note that while the density ratio is an input parameter and
does not depend on a specific theory of convection, the Mach number is an output of such a theory and so is model-dependent.
Regions with Ra < Racrit are stable to convection and shaded in grey.

F.4. HeII CZ

We now examine the bulk structure of HeII CZs, which occur in the subsurface layers of stars with masses 1.3M� .
M? . 60M� Note that in some regions of the HR diagram this convection zone has a Rayleigh number below the ∼ 103

critical value (Chandrasekhar 1961). As a result while the region is superadiabatic, it is not unstable to convection.

We therefore neglect these stable regions in our analysis, and shade them in grey in our figures.

Figure 44 shows the aspect ratio A, which ranges from 102 − 103. These large aspect ratios suggest that local

simulations are likely sufficient to capture their dynamics.

Next, the density ratio D (Figure 45, left) and Mach number Ma (Figure 45, right) inform which physics the fluid

equations must include to model these zones. The density ratio is typically small, of order 2−3, and the Mach number

ranges from ∼ 0.1 at M . 2M� down to 10−4 at M ≈ 9M�. This suggests that above ≈ 2M� the Boussinesq

approximation is valid, whereas below this the fully compressible equations may be needed to capture the dynamics

at moderate Mach numbers.
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Figure 46. The Rayleigh number Ra (left) and Reynolds number Re (right) are shown in terms of log Teff/spectral type and
logL for stellar models with HeII CZs and Milky Way metallicity Z = 0.014. Note that while the Rayleigh number is an input
parameter and does not depend on a specific theory of convection, the Reynolds number is an output of such a theory and so
is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.

The Rayleigh number Ra (Figure 46, left) determines whether or not a putative convection zone is actually unstable

to convection, and the Reynolds number Re determines how turbulent the zone is if instability sets in (Figure 46,

right). At low masses the Rayleigh number is large (1010), at high masses it plummets and eventually becomes sub-

critical, which we show in grey. Likewise at low masses the Reynolds number is large (108) while at high masses it

is quite small (∼ 102). These putative convection zones then span a wide range of properties, from being subcritical

and stable (Chandrasekhar 1961) at high masses, to being marginally unstable and weakly turbulent at intermediate

masses (∼ 9M�), to eventually being strongly unstable and having well-developed turbulence at low masses (∼ 2M�).

The optical depth across a convection zone τCZ (Figure 47, left) indicates whether or not radiation can be handled

in the diffusive approximation, while the optical depth from the outer boundary to infinity τouter (Figure 47, right)

indicates the nature of radiative transfer and cooling in the outer regions of the convection zone. At high masses

(M & 9M�) the surface of the HeII CZ is at low optical depth (τouter ∼ 1−3), while at lower masses the optical depth

quickly becomes large. Similarly, the optical depth across the HeII CZ is moderate at high masses (∼ 10) and becomes

large towards lower masses. Overall, then, the bulk of the HeII CZ can likely be treated in the diffusive approximation,

as can the outer boundary for M . 9M�), while the outer boundary at higher masses likely requires a treatment with

radiation hydrodynamics.

The Eddington ratio ΓEdd (Figure 48, left) indicates whether or not radiation hydrodynamic instabilities are im-

portant in the non-convecting state, and the radiative Eddington ratio Γrad
Edd (Figure 48, right) indicates the same in

the developed convective state. Both ratios are moderate at high masses (Γ ∼ 0.3 at M ∼ 10M�), and radiation

hydrodynamic instabilities could be important in this regime. By contrast at lower masses (M . 6M�) these ratios

are both small, and radiation hydrodynamic instabilities are unlikely to matter.

The Prandtl number Pr (Figure 49, left) measures the relative importance of thermal diffusion and viscosity, and the

magnetic Prandtl number Pm (Figure 49, right) measures the same for magnetic diffusion and viscosity. The Prandtl

number is always small in these models, so the thermal diffusion length-scale is much larger than the viscous scale.

By contrast, the magnetic Prandtl number varies from order-unity at low masses to large (104) at high masses.

The fact that Pm is large at high masses is notable because the quasistatic approximation for magnetohydrodynam-

ics has frequently been used to study magnetoconvection in minimal 3D MHD simulations of planetary and stellar

interiors (e.g. Yan et al. 2019) and assumes that Rm = PmRe→ 0; in doing so, this approximation assumes a global

background magnetic field is dominant and neglects the nonlinear portion of the Lorentz force. This approximation

breaks down in convection zones with Pm > 1 and future numerical experiments should seek to understand how

magnetoconvection operates in this regime.
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Figure 47. The convection optical depth τCZ (left) and the optical depth to the surface τouter (right) are shown in terms of
log Teff/spectral type and logL for stellar models with HeII CZs and Milky Way metallicity Z = 0.014. Note that both of these
are input parameters, and do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection
and shaded in grey.

4.004.254.504.75
log10 Teff/K

1

2

3

4

5

6

lo
g

1
0
L

/L
¯

1.2M¯

1.5M¯

2.0M¯

3.0M¯

4.0M¯

6.0M¯

9.0M¯

12M¯

20M¯

30M¯

60M¯

HeII 

O B A F

Ra<Racrit

-1.7
-1.5
-1.3
-1.1
-0.9
-0.7
-0.5
-0.3
-0.1
0.1

lo
g

1
0
Γ

E
d
d

4.004.254.504.75
log10 Teff/K

1

2

3

4

5

6

lo
g

1
0
L

/L
¯

1.2M¯

1.5M¯

2.0M¯

3.0M¯

4.0M¯

6.0M¯

9.0M¯

12M¯

20M¯

30M¯

60M¯

HeII 

O B A F

Ra<Racrit

-1.7
-1.5
-1.3
-1.1
-0.9
-0.7
-0.5
-0.3
-0.1
0.1

lo
g

1
0
Γ

ra
d

E
d
d

Figure 48. The Eddington ratio with the full luminosity ΓEdd (left) and the radiative luminosity (right) are shown in terms of
log Teff/spectral type and logL for stellar models with HeII CZs and Milky Way metallicity Z = 0.014. Note that while ΓEdd

is an input parameter and does not depend on a specific theory of convection, Γrad
Edd is an output of such a theory and so is

model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.

The radiation pressure ratio βrad (Figure 50) measures the importance of radiation in setting the thermodynamic

properties of the fluid. We see that this is uniformly small (. 0.1) and so radiation pressure likely plays a sub-dominant

role in these zones.

The Ekman number Ek (Figure 51) indicates the relative importance of viscosity and rotation. This is tiny across

the HRD 6, so we expect rotation to dominate over viscosity, except at very small length-scales.

The Rossby number Ro (Figure 52, left) measures the relative importance of rotation and inertia. This is small

(10−3) at high masses but greater than unity at low masses, meaning that the HeII CZ is rotationally constrained at

high masses but not at low masses for typical rotation rates (Nielsen et al. 2013).

6 Note that, because the Prandtl number is also very small, this
does not significantly alter the critical Rayleigh number (see
Ch3 of Chandrasekhar (1961) and appendix D of Jermyn et al.
(2022)).
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Figure 49. The Prandtl number Pr (left) and magnetic Prandtl number Pm (right) are shown in terms of log Teff/spectral
type and logL for stellar models with HeII CZs and Milky Way metallicity Z = 0.014. Note that both Pr and Pm are input
parameters, and so do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection and
shaded in grey.
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Figure 50. The radiation pressure ratio βrad is shown in terms of log Teff/spectral type and logL for stellar models with
HeII CZs and Milky Way metallicity Z = 0.014. Note that this ratio is an input parameter, and does not depend on a specific
theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

We have assumed a fiducial rotation law to calculate Ro. Stars exhibit a variety of different rotation rates, so we

also show the convective turnover time tconv (Figure 52, right) which may be used to estimate the Rossby number for

different rotation periods.

The Péclet number Pe (Figure 53, left) measures the relative importance of advection and diffusion in transporting

heat, and the flux ratio Fconv/F (Figure 53, right) reports the fraction of the energy flux which is advected. Both

exhibit substantial variation with mass. The Péclet number varies from order unity at low masses to very small at

high masses (10−5), and the flux ratio similarly varies from near-unity at low masses to tiny (10−14) at high masses.

That is, there is a large gradient in convective efficiency with mass, with efficient convection at low masses and very

inefficient convection at high masses.

Finally, Figure 54 shows the stiffness of both the inner and outer boundaries of the HeII CZ. Both range from very

stiff (S ∼ 104−8) to very weak (S ∼ 1), with decreasing stiffness towards decreasing mass. So for instance for masses
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Figure 51. The Ekman number Ek is shown in terms of log Teff/spectral type and logL for stellar models with HeII CZs and
Milky Way metallicity Z = 0.014. Note that the Ekman number is an input parameter, and does not depend on a specific
theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 52. The Rossby number Ro (left) and turnover time tconv (right) are shown in terms of log Teff/spectral type and logL
for stellar models with HeII CZs and Milky Way metallicity Z = 0.014. Note that both Ro and tconv are outputs of a theory of
convection and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey. Note that the
turnover time exhibits numerical noise related to the model mesh resolution because the integrand 1/vc diverges towards the
convective boundaries.

M & 3M� we do not expect much mechanical overshooting, whereas for M . 3M� both boundaries should show

substantial overshooting, because their low stiffness causes convective flows to decelerate over large length scales.
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Figure 53. The Péclet number Pe (left) and Fconv/F (right) are shown in terms of log Teff/spectral type and logL for stellar
models with HeII CZs and Milky Way metallicity Z = 0.014. Note that both Pe and Fconv/F are outputs of a theory of
convection and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 54. The stiffness of the inner (left) and outer (right) convective boundaries are shown in terms of log Teff and logL
for stellar models with HeII CZs and Milky Way metallicity Z = 0.014. Note that the stiffness is an output of a theory of
convection and so is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 55. The aspect ratio A is shown in terms of log Teff/spectral type and logL for stellar models with FeCZs and Milky
Way metallicity Z = 0.014. Note that the aspect ratio is an input parameter, and does not depend on a specific theory of
convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

F.5. FeCZ

We round out the ionization-driven convection zones by turning to the Fe CZs, which occur in the subsurface layers

of solar metallicity stars with masses M? & 7M�, and we first turn to our input parameters.

Figure 55 shows the aspect ratio A. The aspect ratios are typically large (10 − 1000) except for very massive

(M? ∼ 60M�) stars on the Terminal Age Main Sequence (TAMS7) so local simulations are likely sufficient to capture

their dynamics. At high masses on the TAMS the aspect ratio is high enough that global (spherical shell) geometry

could be important.

Next, the density ratio D (Figure 56, left) and Mach number Ma (Figure 56, right) inform which physics the fluid

equations must include to model these zones. The density ratio is typically small, of order 2−3, and the Mach number

ranges from . 0.1 at M . 20M� up to 0.3 at M ≈ 50 − 60M�. This suggests that below ≈ 20M� the Boussinesq

approximation is valid, whereas above this the fully compressible equations may be needed to capture the dynamics

at moderate Mach numbers.

In fact the Mach number in Figure 56 is an underestimate of the importance of density fluctuations because at

high masses the zone is radiation pressure dominated (βrad ∼ 1) and has a moderate Péclet number (Pe ∼ 10), so

fluctuations occur isothermally and we should really be comparing the convection speed with the isothermal sound

speed rather than the adiabatic one. Figure 57 shows this comparison, which reveals even larger Mach numbers
(Maiso ∼ 1) at high masses. Taking this into account, we suggest using the fully compressible equations down to

≈ 12M� to ensure that density fluctuations are correctly accounted for.

The Rayleigh number Ra (Figure 58, left) determines whether or not a putative convection zone is actually unstable

to convection, and the Reynolds number Re determines how turbulent the zone is if instability sets in (Figure 58,

right). The Rayleigh number is generally large (105 − 1011), as is the Reynolds number (105 − 107), suggesting that

the FeCZ is strongly unstable to convection and exhibits well-developed turbulence.

The optical depth across a convection zone τCZ (Figure 59, left) indicates whether or not radiation can be handled

in the diffusive approximation, while the optical depth from the outer boundary to infinity τouter (Figure 59, right)

indicates the nature of radiative transfer and cooling in the outer regions of the convection zone. We see that the

optical depth across these zones is large (τCZ ∼ 103), as is that from the outer boundary to infinity (τouter & 10). This

suggests that radiation can be treated in the diffusive approximation.

Our only reservation with this conclusion is that both the Mach number and Eddington ratios can be large in the

FeCZ, so density fluctuations can be large and can open up low-density optically thin “tunnels” through the FeCZ.

This is what is seen in 3D radiation hydrodynamics simulations of the FeCZ (Schultz et al. 2020), which show strong

7 The TAMS is defined by hydrogen exhaustion in the core.



48 Jermyn et al.

4.44.6
log10 Teff/K

3

4

5

6

lo
g

1
0
L

/L
¯

7.0M¯

9.0M¯

12M¯

20M¯

30M¯

60M¯

FeCZ 

O B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
g

1
0
D

4.44.6
log10 Teff/K

3

4

5

6

lo
g

10
L

/L
¯

7.0M¯

9.0M¯

12M¯

20M¯

30M¯

60M¯

FeCZ 

O B

-2.6

-2.2

-1.8

-1.4

-1.0

-0.6

lo
g

10
M

a

Figure 56. The density ratio D (left) and Mach number Ma (right) are shown in terms of log Teff/spectral type and logL for
stellar models with FeCZs and Milky Way metallicity Z = 0.014. Note that while the density ratio is an input parameter and
does not depend on a specific theory of convection, the Mach number is an output of such a theory and so is model-dependent.
Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 57. The Mach number computed with the isothermal sound speed is shown in terms of log Teff and logL for stellar
models with Fe convection zones and Milky Way metallicity Z = 0.014.

correlations between the radiative flux and the attenuation length (κρ)−1. Thus radiation hydrodynamics seems to be

essential for modelling the FeCZ, at least at the higher masses (M & 15M�) which host near-unity Eddington ratios

and moderate Mach numbers.

The Eddington ratio ΓEdd (Figure 60, left) indicates whether or not radiation hydrodynamic instabilities are impor-

tant in the non-convecting state, and the radiative Eddington ratio Γrad
Edd (Figure 60, right) indicates the same in the

developed convective state. Both ratios are moderate at low masses (Γ ∼ 0.3 at M ∼ 10M�) and reach unity at high

masses (M & 25M�), so radiation hydrodynamic instabilities are almost certainly important in the FeCZ.

The Prandtl number Pr (Figure 61, left) measures the relative importance of thermal diffusion and viscosity, and the

magnetic Prandtl number Pm (Figure 61, right) measures the same for magnetic diffusion and viscosity. The Prandtl

number is always small in these models, so the thermal diffusion length-scale is much larger than the viscous scale. By

contrast, the magnetic Prandtl number is very large (102− 108), so the viscous scale is much larger than the magnetic

diffusion scale.
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Figure 58. The Rayleigh number Ra (left) and Reynolds number Re (right) are shown in terms of log Teff/spectral type and
logL for stellar models with FeCZs and Milky Way metallicity Z = 0.014. Note that while the Rayleigh number is an input
parameter and does not depend on a specific theory of convection, the Reynolds number is an output of such a theory and so
is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 59. The convection optical depth τCZ (left) and the optical depth to the surface τouter (right) are shown in terms of
log Teff/spectral type and logL for stellar models with FeCZs and Milky Way metallicity Z = 0.014. Note that both of these
are input parameters, and do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection
and shaded in grey.

The fact that Pm is large at high masses is notable because the quasistatic approximation for magnetohydrodynam-

ics has frequently been used to study magnetoconvection in minimal 3D MHD simulations of planetary and stellar

interiors (e.g. Yan et al. 2019) and assumes that Rm = PmRe→ 0; in doing so, this approximation assumes a global

background magnetic field is dominant and neglects the nonlinear portion of the Lorentz force. This approximation

breaks down in convection zones with Pm > 1 and future numerical experiments should seek to understand how

magnetoconvection operates in this regime.

The radiation pressure ratio βrad (Figure 62) measures the importance of radiation in setting the thermodynamic

properties of the fluid. This is a 30-100% correction and so is very important to capture in modelling the FeCZ.
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Figure 60. The Eddington ratio with the full luminosity ΓEdd (left) and the radiative luminosity (right) are shown in terms
of log Teff/spectral type and logL for stellar models with FeCZs and Milky Way metallicity Z = 0.014. Note that while ΓEdd

is an input parameter and does not depend on a specific theory of convection, Γrad
Edd is an output of such a theory and so is

model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 61. The Prandtl number Pr (left) and magnetic Prandtl number Pm (right) are shown in terms of log Teff/spectral type
and logL for stellar models with FeCZs and Milky Way metallicity Z = 0.014. Note that both Pr and Pm are input parameters,
and so do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

The Ekman number Ek (Figure 63) indicates the relative importance of viscosity and rotation. This is tiny across

the HRD 8, so we expect rotation to dominate over viscosity, except at very small length-scales.

The Rossby number Ro (Figure 64, left) measures the relative importance of rotation and inertia. This is of order

unity, with a gradient from moderately smaller (∼ 0.1) to moderately larger (∼ 3) running from low to high mass.

We conclude then that for typical rotation rates (Nielsen et al. 2013) the FeCZ is rotationally constrained at low

masses (M . 12M�), weakly so at intermediate masses (12M� . M . 30M�) and not constrained at high masses

(M & 30M�).

8 Note that, because the Prandtl number is also very small, this
does not significantly alter the critical Rayleigh number (see
Ch3 of Chandrasekhar (1961) and appendix D of Jermyn et al.
(2022)).
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Figure 62. The radiation pressure ratio βrad is shown in terms of log Teff/spectral type and logL for stellar models with FeCZs
and Milky Way metallicity Z = 0.014. Note that this ratio is an input parameter, and does not depend on a specific theory of
convection. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 63. The Ekman number Ek is shown in terms of log Teff/spectral type and logL for stellar models with FeCZs and
Milky Way metallicity Z = 0.014. Note that the Ekman number is an input parameter, and does not depend on a specific
theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

We have assumed a fiducial rotation law to calculate Ro. Stars exhibit a variety of different rotation rates, so we

also show the convective turnover time tconv (Figure 64, right) which may be used to estimate the Rossby number for

different rotation periods.

The Péclet number Pe (Figure 65, left) measures the relative importance of advection and diffusion in transporting

heat, and the flux ratio Fconv/F (Figure 65, right) reports the fraction of the energy flux which is advected. Both

exhibit substantial variation with mass. The Péclet number varies from order 30 at high masses on the TAMS to

very small at low masses (10−2), and the flux ratio similarly varies from ∼ 0.3 at high masses on the TAMS to tiny

(10−6) at low masses. That is, there is a large gradient in convective efficiency with mass, with moderately efficient

convection at high masses and very inefficient convection at low masses.

Finally, Figure 66 shows the stiffness of both the inner and outer boundaries of the FeCZ. The outer boundary is

considerably more stiff (S ∼ 102−6) than the inner boundary (S ∼ 100−3). Over most of the mass range and much

of the main-sequence we expect significant overshooting past the relatively weak inner boundary. Naively we would

expect the opposite for the outer boundary, but there is numerical evidence of significant motion past the convective
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Figure 64. The Rossby number Ro (left) and turnover time tconv (right) are shown in terms of log Teff/spectral type and logL
for stellar models with FeCZs and Milky Way metallicity Z = 0.014. Note that both Ro and tconv are outputs of a theory of
convection and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 65. The Péclet number Pe (left) and Fconv/F (right) are shown in terms of log Teff/spectral type and logL for stellar
models with FeCZs and Milky Way metallicity Z = 0.014. Note that both Pe and Fconv/F are outputs of a theory of convection
and so are model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.

boundary (Schultz et al. 2020). We suspect this is due to the moderate-to-small Péclet numbers in and near the FeCZ,

which mean that motions approach isothermal and so see a reduced entropy gradient. This lowers the effective stiffness

of the outer boundary.
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Figure 66. The stiffness of the inner (left) and outer (right) convective boundaries are shown in terms of log Teff and logL for
stellar models with FeCZs and Milky Way metallicity Z = 0.014. Note that the stiffness is an output of a theory of convection
and so is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 67. The density ratio D (left) and Mach number Ma (right) are shown in terms of log Teff/spectral type and logL for
stellar models with Core CZs and Milky Way metallicity Z = 0.014. Note that while the density ratio is an input parameter and
does not depend on a specific theory of convection, the Mach number is an output of such a theory and so is model-dependent.
Regions with Ra < Racrit are stable to convection and shaded in grey.

F.6. Core CZ

We now examine the bulk structure of Core CZs, which occur in stars with masses M? & 1.1M�. The aspect ratios

are unity, by definition, so the global (spherical) geometry is important.

The density ratio D (Figure 67, left) and Mach number Ma (Figure 67, right) inform which physics the fluid equations

must include to model these zones. The density ratio is typically small, of order 2− 3, and the Mach number ranges

from ∼ 0.1 at M . 2M� down to 10−4 at M ≈ 9M�. This suggests that above ≈ 2M� the Boussinesq approximation

is valid, whereas below this the fully compressible equations may be needed to capture the dynamics at moderate

Mach numbers.

The Rayleigh number Ra (Figure 68, left) determines whether or not a putative convection zone is actually unstable

to convection, and the Reynolds number Re determines how turbulent the zone is if instability sets in (Figure 68, right).

In these zones both numbers are enormous, so we should expect convective instability to result in highly turbulent

flows.

The optical depth across a convection zone τCZ (Figure 69, left) indicates whether or not radiation can be handled

in the diffusive approximation, while the optical depth from the outer boundary to infinity τouter (Figure 69, right)

indicates the nature of radiative transfer and cooling in the outer regions of the convection zone. We see that the

optical depth across these zones is enormous (τCZ ∼ 1011) and their outer boundaries lie at very large optical depths

(τouter & 1010). This means that both the bulk and the outer boundary of the Core CZ can likely be modeled in the

limit of radiative diffusion.

The Eddington ratio ΓEdd (Figure 70, left) indicates whether or not radiation hydrodynamic instabilities are im-

portant in the non-convecting state, and the radiative Eddington ratio Γrad
Edd (Figure 70, right) indicates the same in

the developed convective state. The Eddington ratio with the full luminosity (ΓEdd) approaches unity around masses

of 20M� and continues to rise with increasing mass from there, resulting in a nominally super-Eddington system.

Convection is able to carry much of this luminosity, however, and so the radiative Eddington ratio Γrad
Edd approaches

but does not exceed unity.

These near-unity Eddington ratios suggest that radiation hydrodynamic instabilities are important. We have two

reservations with this conclusion. First, the Mach numbers in the Core CZ are tiny, so the velocity field does not drive

large density fluctuations and hence we do not expect large opacity fluctuations like those reported in the FeCZ (Schultz

et al. 2020). Secondly, the optical depth across the Core CZ is enormous, so even if radiation hydrodynamics instabilities

arise they should remain limited to scales which are small compared to the size of the convection zone.

The Prandtl number Pr (Figure 71, left) measures the relative importance of thermal diffusion and viscosity, and the

magnetic Prandtl number Pm (Figure 71, right) measures the same for magnetic diffusion and viscosity. The Prandtl
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Figure 68. The Rayleigh number Ra (left) and Reynolds number Re (right) are shown in terms of log Teff/spectral type and
logL for stellar models with Core CZs and Milky Way metallicity Z = 0.014. Note that while the Rayleigh number is an input
parameter and does not depend on a specific theory of convection, the Reynolds number is an output of such a theory and so
is model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 69. The convection optical depth τCZ (left) and the optical depth to the surface τouter (right) are shown in terms of
log Teff/spectral type and logL for stellar models with Core CZs and Milky Way metallicity Z = 0.014. Note that both of these
are input parameters, and do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection
and shaded in grey.

number is always small in these models, so the thermal diffusion length-scale is much larger than the viscous scale.

By contrast, the magnetic Prandtl number varies from order-unity at low masses to large (104) at high masses.

The fact that Pm is large at high masses is notable because the quasistatic approximation for magnetohydrodynam-

ics has frequently been used to study magnetoconvection in minimal 3D MHD simulations of planetary and stellar

interiors (e.g. Yan et al. 2019) and assumes that Rm = PmRe→ 0; in doing so, this approximation assumes a global

background magnetic field is dominant and neglects the nonlinear portion of the Lorentz force. This approximation

breaks down in convection zones with Pm > 1 and future numerical experiments should seek to understand how

magnetoconvection operates in this regime.

The radiation pressure ratio βrad (Figure 72) measures the importance of radiation in setting the thermodynamic

properties of the fluid. This is small at low masses (M? . 9M�) but reaches a 30-100% correction at high masses

(M? > 20M�) and so radiation pressure is very important to capture at the high mass end.
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Figure 70. The Eddington ratio with the full luminosity ΓEdd (left) and the radiative luminosity (right) are shown in terms of
log Teff/spectral type and logL for stellar models with Core CZs and Milky Way metallicity Z = 0.014. Note that while ΓEdd

is an input parameter and does not depend on a specific theory of convection, Γrad
Edd is an output of such a theory and so is

model-dependent. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 71. The Prandtl number Pr (left) and magnetic Prandtl number Pm (right) are shown in terms of log Teff/spectral
type and logL for stellar models with Core CZs and Milky Way metallicity Z = 0.014. Note that both Pr and Pm are input
parameters, and so do not depend on a specific theory of convection. Regions with Ra < Racrit are stable to convection and
shaded in grey.

The Ekman number Ek (Figure 73) indicates the relative importance of viscosity and rotation. This is tiny across

the HRD, so we expect rotation to dominate over viscosity, except at very small length-scales.

The Rossby number Ro (Figure 74, left) measures the relative importance of rotation and inertia. This is small

(10−2 − 10−3), meaning that the Core CZ is rotationally constrained for typical rotation rates (Nielsen et al. 2013).

We have assumed a fiducial rotation law to calculate Ro. Stars exhibit a variety of different rotation rates, so we

also show the convective turnover time tconv (Figure 74, right) which may be used to estimate the Rossby number for

different rotation periods.

The Péclet number Pe (Figure 75, left) measures the relative importance of advection and diffusion in transporting

heat, and the flux ratio Fconv/F (Figure 75, right) reports the fraction of the energy flux which is advected. The Péclet

number is always large (106 − 107) and the flux ratio varies from ∼ 0.2 at the low mass end (M . 2M�) to ∼ 0.6 for

M & 3M�. In general then core convection is very efficient, and carries a substantial fraction of the flux.
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Figure 72. The radiation pressure ratio βrad is shown in terms of log Teff/spectral type and logL for stellar models with Core
CZs and Milky Way metallicity Z = 0.014. Note that this ratio is an input parameter, and does not depend on a specific theory
of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.
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Figure 73. The Ekman number Ek is shown in terms of log Teff/spectral type and logL for stellar models with Core CZs and
Milky Way metallicity Z = 0.014. Note that the Ekman number is an input parameter, and does not depend on a specific
theory of convection. Regions with Ra < Racrit are stable to convection and shaded in grey.

Finally, Figure 76 shows the stiffness of the outer boundary of the core CZ. Over the whole mass range and main-

sequence this boundary is very stiff (S ∼ 105−9), so we do not expect much mechanical overshooting, though there

could still well be convective penetration (Anders et al. 2021).
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for stellar models with Core CZs and Milky Way metallicity Z = 0.014. Note that both Ro and tconv are outputs of a theory of
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